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ABSTRACT	
  	
  
 

Efficiency and safety within the oil and gas (O&G) industry is often compromised due to 
microbiological activity.  Bacterial growth has been responsible for many instances of biofouling, 
reservoir souring, as well as the corrosion of concrete and metal surfaces.  In particular, sulfate 
reducing bacteria (SRB) cause significant problems in the petroleum industry through microbially 
influenced corrosion (MIC) of metal pipelines and infrastructure, and by degradation of petroleum 
in reservoirs (reservoir souring) and storage facilities. We are actively investigating the potential 
use of phage for controlling SRB.  Phage are natural, bacteriolytic agents that are highly specific 
for bacterial hosts and harmless to all other life forms, including humans.  Because of their 
extreme host specificity, the use of phage requires knowledge of the specific bacterial targets in 
any given sample.  The types of bacteria which are present in petroleum samples and handling 
facilities are currently unknown, except at a very superficial level.  Funds from RPSEA were 
utilized to evaluate both the diversity of sulfate reducing bacteria within pipes and reservoirs, to 
isolate and culture SRB from these same samples, and to evaluate the capacity of the phage to 
control SRB under laboratory conditions.   

Project scope included the evaluation of the bacterial populations present in two locations 
of direct interest to RPSEA: an oil brine mud sample from a crude oil salt storage cavern (COSC) 
and oil and water samples taken from an on shore pipeline (OSP).  Both sites receive oil from the 
deep water Gulf of Mexico. The diversity of bacteria in the samples was determined both utilizing 
a traditional method- DGGE, and by using a cutting edge, next generation sequencing approach 
based on pyrosequencing analysis of the 16s amplicon.   

Bacteroidetes, Haloanaerobium, Halocella, Clostridia and salt-tolerant sulfate reducing 
members of the Deltaproteobacteria including Desulfobotulus and Desulfonauticus were found to 
dominate the COSC oil brine.  In contrast, the OSP pipeline was found to be dominated by highly 
aggressive SRB strains as well as iron reducing bacteria.  Individual SRB were also cultured 
from each of these locations.  Phages were isolated that showed virulent activity against the SRB 
cultures.  Application of phage to either mixed or pure cultures inhibited growth of the SRB and 
thus Phage biocontrol treatment holds promise for the oil and gas industry by reducing the need 
for toxic chemical biocides. 
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EXECUTIVE	
  SUMMARY	
  
 
Pipeline corrosion and reservoir souring are major issues that result in elevated costs, increased 
health risks, and a host of operating problems for the petroleum industry (146, 147).  Sulfate-
reducing bacteria (SRB) pose a particular threat to the industry due to their ability to reduce 
sulfates to sulfides, releasing sulfuric acid and hydrogen sulfide (H2S) as byproducts (146, 147).  
H2S gas is not only extremely toxic and flammable, but it causes souring of the petroleum 
product, resulting in reduced quality and increased handling costs. Current technologies used to 
control SRB include mechanical scraping of biofilms formed in pipelines with ’pigs’ and 
widespread application of chemical biocides.  Chemical biocides are expensive, toxic to humans 
and the environment, and are not always effective.  Improved biocides should be less toxic and 
more effective. 
 
New biocides are being developed herein based on bacteriolytic agents called phage.  Phage 
are the abundant and diverse natural viral predators of bacteria and are composed of protein and 
DNA (15), (18, 51, 126). There is considerable interest in developing phage products for human 
and agricultural purposes (54, 73, 83).   Commercial phage products are available in the United 
States for controlling plant pathogenic bacteria on tomatoes and peppers as well as E. coli 
O157:H7 levels on slaughterhouse cattle. Importantly, these products are considered non-toxic, 
application does not require protective gear, and there is no wait time to handle or consume 
vegetables or cattle after application.   
 
The biggest challenge facing the development of phage-based biocides is matching active phage 
to the target bacteria.  This is because each phage recognizes and kills only a few types of 
bacteria and the bacterial populations present in oilfield systems are poorly understood (15).  
The limited number of types of bacteria that a given phage will infect is termed the phage host 
range.  Even though it is known that the desired targets are the H2S producing SRB, the SRB 
includes many different types of otherwise unrelated bacteria (8, 149). Only a few phage capable 
of infecting SRB have been described in the scientific literature and these were not oil industry 
associated SRB (34, 119, 120, 150). This means that research into target bacteria present in the 
oil field, as well as de novo phage isolation will be required prior to the production of phage for 
biocidal use. RPSEA funding was utilized to address these limitations.  Bacterial populations 
from several locations were elucidated.  SRB present in these samples were isolated and 
matched to lytic phage.  Finally, the phage were demonstrated to limit SRB growth in liquid 
cultures.  
 
These results are very promising.  However, development of effective phage products will 
ultimately depend on identifying or developing phage with expanded host ranges.   
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BACKGROUND	
  AND	
  RATIONALE	
  
	
  

The corrosion-promoting capacity of microorganisms has been recognized for over 50 
years, a process often referred to as MIC, for microbial influenced corrosion (89).  The most 
commonly used approaches to controlling MIC include the physical removal of microbial biofilms 
by pigging and the application of chemical biocides.  However, despite active monitoring and 
rigorous chemical biocide applications, incidences of MIC associated pipeline failures continue to 
be reported (84).  Often, these same biocides are shown to control MIC-associated organisms 
quite well in a laboratory situation following established industry practices, but their efficacy 
drops over time and following dilution within the product downstream.  Biocide efficacy testing is 
usually performed by treating rapidly growing cells in defined growth media.  The majority of 
studies utilize bacteria capable of producing either acids or H2S, and are classified based on 
these phenotypes as acid producing bacteria (APB), or sulfate reducing bacteria (SRB), 
respectively.  Treatment efficacy is usually scored by monitoring changes in population density of 
planktonic cells, determined by conducting a dilution series and calculating bacterial density 
using the most probably number (MPN) approach.  There are several limitations to this 
approach, necessitating the need to develop more accurate monitoring and testing procedures in 
order to better identify truly effective treatment regimes.    

Biocide efficacy assays typically assume that all SRB or APB will respond similarly to 
chemical treatments and thus that the specific identity of any SRB or APB is not important.  This 
is almost certainly a gross simplification.  In medical microbiology, there is a more general 
understanding that different bacteria can be resistant or sensitive to different antibiotics, and 
even to more general disinfectants.  Culture swabs are routinely obtained from patients in order 
to evaluate bacterial antibiotic sensitivity.  The problem for the O&G industry is compounded by 
confusion over what the terms “APB” and “SRB” actually encompasses.  The terms “SRB” and 
“APB” are phenotypic, rather than genotypic, classifications, and numerous types of unrelated 
groups of bacteria are capable of acid production or sulfate reduction.  The SRB, for example, 
are not a homogenous group of bacteria (149).  Bacterial clades where sulfate reduction occurs 
include members of the Firmicutes, the delta subgroup of the Proteobacteria, Deferribacter, and 
Nitrospira as well as several archaeal clades (149).  The genetic hallmarks defining SRB are the 
genes encoding the DsrA and DsrB dissimilatory sulfate reductase subunits (88, 148).  It needs 
to be emphasized, however, H2S-generating sulfur and thiosulfate reducing bacteria lack DsrA/B 
genes.  The relative abundance and importance of sulfate, sulfur and thiosulfate reducing 
bacteria in generating H2S in the oilfield is unknown.  Various molecular tools such as qPCR, 
microarrays, and next generation “high throughput” DNA sequencing technologies have been 
introduced to more accurately dissect bacterial populations of relevance to the oilfield. (75) 
These advanced techniques have revealed that there is a larger microbial consortium that may 
be involved in MIC.  This information is extremely viable to understand and develop a greater 
understanding of the resulting MIC corrosion mechanism, by understanding what bacteria are 
present and more directly what impact they have on the observed corrosion.   

Another issue is that while biocide efficacy tests focus of planktonic cells, the organisms 
actually responsible for any given MIC incidence are often growing in a biofilm. Planktonic and 
biofilm populations may have markedly different responses to chemical treatments.  Much of this 
may be due to the structure of the biofilm. For example, the exopolysaccharide matrix produced 
by biofilm organisms may exclude and/or influence the penetration of antimicrobial agents. (28, 
143) Furthermore, bacteria in a biofilm may not be rapidly growing and thus can escape short 
term chemical exposures.  Poor penetration into, and reduced mass transport of the biocide 
chemicals within the biofilm results in significantly less concentration of active biocide at the base 
of the biofilm where the problem actually exists.   
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Ultimately, advances in the technologies used to understand and monitor microbial 
corrosion mechanism need to be translated into superior field mitigation methods.  MIC related 
issues are severe enough to justify testing highly experimental or novel approaches (92, 146). An 
approach that we are investigating is the use of bacteriolytic phage, the natural, highly diverse 
and highly abundant viral predators of bacteria (44, 73, 140, 157). The most pressing issues 
affecting the use of phage is the extreme host specificity that phage exhibit (15).  Any one type of 
phage typically infects only one or a few strains of a specific bacterial species. Extreme host 
specificity makes phage harmless to non-target organisms.  However, the downside of extreme 
host specificity is that developing phage treatments requires detailed knowledge of the types of 
bacteria that are causing the problem. The application of genomic technologies, specifically high 
throughput shotgun sequencing of environmental DNA samples, for bacterial identification will 
allow for the rational application of phages for the control of problem bacteria (31). Phages have 
been identified against a few SRB, specifically Desulfovibrio vulgaris and Desulfovibrio 
aespoeensis. (34, 49, 119, 120, 130, 134, 150) Because of the extraordinarily high genetic 
diversity of phages, there are no universally conserved sequences present in all phage that can 
be used as a molecular marker to assay for the presence of phage (17, 18, 52).   

 
We are developing an approach to research, develop, and screen novel treatment 

programs designed to combat MIC within the petroleum industry. The potential for using phage 
to control SRB populations within the oilfield is being investigated.  Towards this end, population 
studies of oilfield samples were conducted and the dominant SRB identified and scored.  We 
previously reported isolating a phage capable of forming plaques on a lawn of a mixed co-culture 
of a Desulfovibrio and Haloanaerobian isolated from one of these environmental samples (130). 
The SRB from these samples were isolated in pure culture and it was demonstrated to be the 
actual host of phage ϕCOSC.D.  Application of ϕCOSC.D to culture media prior to inoculation 
with the mixed Desulfovibrio and Haloanaerobian host was demonstrated to control growth of the 
SRB for extended periods of time.  Future experimental plans include utilization of a genetically 
defined, yet highly mixed populations of bacteria in a dynamic flowcell system providing a more 
accurate representation of a field situation in which biofilm development occurs. 
	
  

REPORT	
  DETAILS	
  
	
  
Experimental	
  Methods:	
  	
  
	
  
Culture medium. All SRB pure and mixed cultures were propagated per NACE TMO194-94 
Standard recommended Modified Postgates B Broth (MPB) consisting of, per L, 0.5 g KH2PO4, 
1.0 g  NH4Cl, 1.0 g Na2SO4, 1.0 g CaCl2-6H2O, 2.0 g MgSO4-7H2O, 5.0 mL 60% syrup 
NaC3H5O3, 1.0 g Yeast Extract, 2.5 g NaC2H3O2, 0.1 g C2H4O2S, 0.1 g C6H7NaO6, 0.5 g FeSO4-
7H2O, 25 g NaCl and supplemented with either 5 or 20 g/L Instant Ocean for 2.5% salinity and 
6% salinity, respectively, and adjusted to pH of 7.2 prior sterilization (Appendix B).  GHB and 
APB populations were cultured utilizing the NACE TMO194-94 Standard recommended Phenol 
Red Dextrose (PRD) consisting of, per L, 1.0 g Beef Extract, 10.0 g Peptone, 0.018 g Phenol 
Red, 5.0 g Dextrose, and 37.8 g Instant Ocean.  The pH was adjusted to 8.13 with HCl and 
autoclaved at 121°C for 15 minutes. 
 
Bacterial Enrichment Cultures.  Approximately 4 L of anoxic black sediment with associated 
headspace of brine water was collected from efflux brine pond formed by a salt cavern oil 
storage system.  Oil and H2S was obvious in the sample.  For bacterial enrichments, 0.5 ml of 
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the sample was inoculated into to 4.5 ml MPB, supplemented to 1%, 2.5%, 6%, and 10% salinity.  
Colony isolation was performed by plating liquid cultures on MPB supplemented with 16 g/L 
Bacto agar for bacterial colony isolation (103, 106).  All bacterial incubations were conducted at 
22oC. 
 
Isolation of pure SRB strains.  All SRB host and phage manipulations were conducted in a 
Forma anaerobic chamber in a 90% N2, 5% CO2, 5% H2 gas mixture.  The SRB present in mixed 
culture COSC.D1 was isolated in pure form by preparing 10 fold serial dilutions of the mixed 
culture and immediately plating on MPB agar plates (130). Well-separated black colonies 
appeared after three weeks incubation at 22o C in the anaerobic chamber.  These colonies were 
subject to repeated dilution and plating until only black SRB colonies were observed.    
 
Bacterial DNA Isolation.  DNA was extracted from the raw sample bacterial pellets, which 
contain a mixture of small solids and bacterial cells, and enrichment culture with a commercially 
available soil DNA isolation kit (SoilMaster™ DNA Extraction Kit, Epicenter Biotechnologies) 
following the manufacturers recommendations.  For colony PCR, DNA was isolated from single 
colonies using the Lyse and Go PCR Reagent (Pierce Chemicals), following the manufacturers 
recommendations. 
 
16s rDNA PCR and Temperature Gradient Gel Electrophoresis, TGGE.  Population 
structures of the samples was determined by analysis of the 16s ribosomal sequences by 
temperature gradient gel electrophoresis (TGGE) analysis followed by sequencing individual 
bands.  PCR reactions were performed on the isolated DNA with primers (16s.F-GC-clamp, 5’-
CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGCCTACGGGAGGCAGCAG-
3’) and (16s.R, 5’-CCCCGTCAATTCCTTTGAGTTT3’) and PCR reagents according to the 
manufacturer’s recommendation (Taq DNA polymerase with ThermoPol buffer, New England 
Biolabs catalog. number M027L) and cycle conditions of 1 min- 30 sec- 1 min for 30 cycles).  The 
bands were resolved by TGGE using the BioRad Dcode Universal Mutation Detection System 
(BioRad).  PCR products were resolved on an 8% urea, 8% acrylamide, 1.25X TAE gel with a 
temperature range of 48o to 63o C at a ramp rate of 1.3oC/hour, for 21 hours.  The gel was 
stained with ethidium bromide and imaged.  Band were excised and the DNA was extracted by 
maceration of the acrylamide slice, addition of 10 mM Tris pH 7.5, freezing overnight and 
pelleting of the acrylamide by centrifugation.  The supernatant was used as a template in PCR 
reactions using (16s.F-forward 5’-CCTACGGGAGGCAGCAG-3’) and 16s.R (16s.R, 5’-
CCCCGTCAATTCCTTTGAGTTT3’) primers and the same conditions that GC-clamp PCR was 
performed above. The 16s genes from pure cultures were amplified by colony PCR using the 
16s.F and 16s.R PCR primers.  All PCR products were purified using the QIAquick PCR 
purification kit (Qiagen catalog number 28106) and were sequenced with the 16s.F primer using 
Applied Biosystems (AB1) BigDye Terminator Cycle Sequencing Kit version 3.1 (catalog number 
4337455) according to the manufacturer’s recommendation. The sequences were resolved at the 
Institute for Plant Genomics and Biotechnology at Texas A&M University.  Sequence 
chromatograms were trimmed and edited using Sequencher (GeneCodes).  Comparisons to 
sequences in the public database were made using blastn 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi).   
 
Phylogenetic analysis of completely sequence SRB.  DsrA protein sequences and 16s rRNA 
gene sequences were extracted from each whole genome entry.  The program ClustalX 1.83 
(http://www.clustal.org) was used to generate neighbor-joining trees with bootstrap values of 
1000.  
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Identification of prophage elements in SRB genome entries.  Putative prophage elements 
were identified in the genome entries of SRB species by screening the protein database of each 
species for contiguous segments at least 30 kb encoding proteins with functional annotations 
limited to a combination of phage associated functions and hypothetical proteins of unknown 
function (16, 131).  Phage associated functions included phage morphogenesis, regulatory, and 
lysis proteins, along with the DNA metabolism proteins most commonly encoded in phage 
genomes. Representative entries in each block were compared to proteins in the public protein 
database using BLAST.  The left and right most boundaries of each element were arbitrarily 
defined as the left and right most genes whose product exhibited significant similarity to phage 
proteins present in the Caudovirales protein database.   
 
Phage Isolation.  Phage were isolated using a standard phage enrichment method (132-134).  
Briefly, an extract was prepared from the original BM sediment by filtration through decreasingly 
small pore size filters, ultimately through a 0.22 mm pore size sterile filter unit. This BM extract 
was mixed 1:1 with MPB and inoculated with 100 ml of a week old culture of OBM2.  Following 
seven-day incubation at 22oC without agitation, chloroform was added to 0.1% of the sample 
volume and bacterial cell debris removed by a combination of centrifugation and filtration through 
a 0.22 mm pore size filter.  Agar overlays were prepared my mixing 100 ml of a four-day culture 
of host with MPB top agar (MPB, made without Fe, augmented with 0.7 g/L agar) and pouring 
over MPB agar plates (made without Fe).  10 ml drops of the phage enrichment were spotted 
onto the lawn.   Clearings were observed following seven day incubation at 22oC.  The 
concentration of phage in the sample was determined by addition of 100 ml of serially diluted 
phage stock into the MPB top agar/ bacterial host suspension prior to overlaying on MPB agar 
plates.  The ability of phage ϕCOSC.D to form plaques on the lawn of the pure SRB host was 
tested as described for the mixed host culture, except that a four-day old stock of pure host was 
used as the plating host (130). 
 
Efficacy Study in Liquid Media.  Phage efficacy studies were conducted in 100 ml of 6% MPB 
broth in 250 ml orange-capped bottles.  Each bottle was inoculated with 200 ml of host bacteria, 
corresponding to 104 SRB and either no phage (control) 0.01 ml phage, 0.1 ml phage, or 1 ml 
phage.  Bottles were incubated at 22oC for nine days with gentle shaking (92 rpm).  SRB growth 
was monitored visually for the production of black iron sulfide and by serial dilution counting in 
microtitier plates.  Phage prophylactic experiments were conducted by preparing 10-fold serial 
dilutions of the mixed host in 6% MPB media in 10 ml serum vial.  Phage treated samples also 
received 0.1 ml of a phage lysate containing 107 pfu/ml ϕCOSC.D.  Vials were incubated at room 
temperature and SRB growth scored.   
 
Pyrosequence analysis of environmental samples, enrichment cultures and pure strains.  
DNA was isolated from either one ml of enrichment culture, or from 1 gram of sediment from 
environmental samples using the UltraClean Microbial DNA Isolation Kit (BioExpress G-3200-
50).  DNA was subject to bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) using 
primers G.28F 5’TTTGATCNTGGCTCAG and G.519r 5’ GTNTTACNGCGGCKGCTG (31).  
Resulting sequences were trimmed and quality scored.  All sequences passing quality score 
were compared using BLASTn to a ribosomal database to make classification. Identity values 
were used to make assignments to the appropriate taxonomic levels based on the following 
cutoffs: Sequences with identity scores, to known or well characterized 16S sequences, greater 
than 97% identity (<3% divergence) were resolved at the species level, between 95% and 97% 
at the genus level, between 90% and 95% at the family and between 85% and 90% at the order 
level, 80 and 85% at the class and 77% to 80% at phyla level. 
DNA was isolated from one ml of pure culture using the UltraClean Microbial DNA Isolation Kit 
(BioExpress G-3200-50).  The 16s coding region was amplified from each DNA sample using 
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primers 16s.F (CCTACGGGAGGCAGCAG) and 16s.R (CCCCGTCAATTCCTTTGAGTTT) using 
the AcuPrime PCR master mix (Invitrogen) following the manufactures protocol.  PCR products 
were sequenced using BigDye terminators (ABI) at Eton Bioscience Inc (California).   
 
Identification of prophage elements in SRB genome entries. 
Putative prophage elements were identified in the genome entries of SRB species by screening 
the protein database of each species for contiguous segments at least 30 kb encoding proteins 
with functional annotations limited to a combination of phage associated functions and 
hypothetical proteins of unknown function (16, 131).  Phage associated functions included phage 
morphogenesis, regulatory, and lysis proteins, along with the DNA metabolism proteins most 
commonly encoded in phage genomes. Representative entries in each block were compared to 
proteins in the public protein database using BLAST.  The left and right most boundaries of each 
element were arbitrarily defined as the left and right most genes whose product exhibited 
significant similarity to phage proteins present in the Caudovirales protein database.   
 
Phylogenetic analysis of completely sequence SRB. 
DsrA protein sequences and 16s rRNA gene sequences were extracted from each whole 
genome entry.  The program ClustalX 1.83 (http://www.clustal.org) was used to generate 
neighbor joining trees with bootstrap values of 1000.	
  

Results	
  and	
  Discussions:	
  

Impact	
  to	
  Producers	
  
Phage have similar inhibitory effects on active SRB cultures as do currently used chemical 
biocides. Furthermore phage biocontrol treatments are naturally “green” and  have a longer 
lasting inhibitory effect; thus, implying that phage based biocontrol can provide a better treatment 
option for the petroleum industry to counter microbially influenced corrosion and possibly 
reservoir souring. 
	
  

Technology	
  Transfer	
  Efforts	
  
	
  
Ecolyse has given more than 4 presentations at RPSEA conferences and meetings.  Continued 
commercialization  efforts are underway with RPSEA members.  See Appendix G for a partial list 
of presentations. 
	
  

A.	
  Sample	
  Collection:	
  COSC	
  and	
  OSP	
  	
  

COSC	
  Sample	
  Details	
  
Approximately 4 L of a high-salinity black mud (BM) sample from a brine pond 

congruous with a gulf coast crude oil salt storage cavern COSC. The sample was composed of 
black mud (BM) and sand, with a heavy petroleum component.  The sulfate reducing bacteria 
(SRB) activity was obvious, as evidenced by H2S emissions from the sample.  
 

OSP	
  Sample	
  Details	
  
The second set of samples were collected from an on shore pipeline (OSP) that 

receives crude oil from pipelines originating from off shore sources in the Gulf of Mexico.  
The pipeline is approx. 36 miles of 12”, 0.562 wall pipe. This pipeline has a history of 
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rapid MIC incidences, in particular at girth welds downstream of a certain production 
platform.  Corrosion was exasperated following an eight month line shut- due to 
Hurricane Katrina.  Fluids transported by this line consists of approximately 75% 
produced water with a total dissolved solid (TDS) between 120,000 and 140,000 ppm, 
and 25% crude oil approximately.  Three production streams feed into OSP.  One of the 
production lines carries crude and other production fluids from production systems in 
different formations that come into a platform and commingles with local production.  
Further, production feeds into this line as well. A service company treats the pipeline 
continuously with corrosion inhibitor and a second separately treats the production field. 
What chemicals are used on these two platforms and whether any chemical 
incompatibilities may exist is unknown. In the final analysis, the total fluids being 
transported through OSP are commingled from numerous production zones within 
different formations from the Gulf of Mexico.  

 
A total of eight samples were collected from the pipeline.  Seven of these were 

taken in a timed sequence in front of a pigging run.  The eighth sample is the wax and 
biofilm solids from the pigging run.  For each time point, 500 ml of water and associated 
oils were collected.  At each time point, the alkalinity, temperature, pH, dissolved H2S, 
CO2, and O2 levels of the sample were measured (Table 1, OSP Field Chemistry 
Analysis).  Additionally, a full water analysis was also performed for each sample 
(Appendix A). Sulfate levels ranged from 43.1 to 54.5 ppm.  This is greater than the 
minimum concentration required for maintaining regular microbial activity.  Sulfide was 
detected in samples at 2.4 ppm.  Sulfide may be biogenic or abiotic in origin, evolved as 
the by-product of SRB-mediate sulfate reduction or via the geothermal degradations of 
sulfur containing rock.  Volatile fatty acid levels were less than 2 ppm.  Commonly used 
corrosion inhibitors were present at undetectable levels.   

 
Sample Sampling Point Alkalinity TOSP 

(*F) pH Dissolved H2S  Dissolved CO2  Dissolved 
O2  

1 920 Barrels 480 ppm 82.4 6.0 0.2 ppm 160 ppm < 20ppb 

2 4400 Barrels 546 ppm 86.0 6.5 0.1ppm 170 ppm < 20ppb 

3 9300 Barrels 456 ppm 82.4 6.0 0.3ppm 160 ppm < 20ppb 

4 12,000 Barrels 598 ppm 78.8 6.0 0.2 ppm 120 ppm < 20ppb 

5 21,400 Barrels 436 ppm 82.4 6.0 0.0 ppm 160 ppm < 20ppb 

6 26,100 Barrels 480 ppm 84.2 6.0 0.0 ppm 160 ppm < 20ppb 

7 34,000 Barrels 500 ppm 84.2 6.0 0.0 ppm 130 ppm DNP 

8 26,100 Barrels.c nd nd nd nd nd nd 

Table 1.  Field Chemistry Analysis of the OSP pig samples analyzed immediately following sample collection, utilizing the 
field test kits by Hach for alkalinity and Chemetrics for H2S, CO2, and O2. .  Sample 26,100 Barrels. c is from a coupon 
sample.  nd, not determined. 

 
Both SRB and APB were detected by MPN analysis in the planktonic phase of 

every sample taken, ranging from 104 to 105 SRB/ml and 101 to 102 APB/ ml sample 
(Table 2).  The ATP assays indicated microbial levels of between 105 to 107 cells per ml 
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sample.  Taken together, this data suggests that there exists a high level of 
contamination and/or the presence of a biofilm in the system.   

 
OSP Sample Combined Sample GHB APB SRB ATP Analysis 

OSP.1 OSP.A     920 Barrels 2.5 X 102 /mL 2.5 X 101 /mL 4.5 X 104 /mL 7.8 X 105 /mL 
OSP.2 OSP.B  4,400 Barrels 2.5 X 101 /mL 2.5 X 101 /mL 1.5 X 105 /mL 1.3 X 106 /mL 
OSP.3 OSP.A  9,300 Barrels 9.5 X 101 /mL 2.5 X 101 /mL 2.5 X 105 /mL 9.1 X 105 /mL 
OSP.4 OSP.B 12,000 Barrels 9.5 X 101 /mL 9.5 X 101 /mL 9.5 X 104 /mL 4.9 X 106 /mL 
OSP.5 OSP.B 21,400 Barrels 2.5 X 102 /mL 4.5 X 101 /mL 4.5 X 105 /mL 1.3 X 107 /mL 
OSP.6 OSP.C 26,100 Barrels 2.5 X 103 /mL 2.5 X 101 /mL 2.5 X 104 /mL 6.8 X 105 /mL 
OSP.7 OSP.B 34,000 Barrels 4.5 X 102 /mL 1.5 X 102 /mL 4.5 X 104 /mL 2.2 X 106 /mL 
OSP.8 OSP.D 26,100 Barrels.c 0.9 X 100 /in2 0.4 X 100 /in2 9.5 X 102 /in2 nd 
Table 2. Enumeration of bacteria in OSP samples 1 through 8 by culture-based MPN and an ATP quantification assay.  GHB, 
general heterotrophic bacteria; APB, acid-producing bacteria; SRB, sulfate-reducing bacteria.  The data presented in this table 
is a quantification of the viable planktonic bacterial population (suspended bacteria) and the viable sessile bacteria population 
(attached bacteria).  GHB and APB levels were assayed by monitoring growth in PRD at 14 days incubation at 30°C.  SRB levels 
were assayed by monitoring growth in MPB after 28 days of incubation at 30°C.   ATP assays were conducted utilizing the 
Luminultratm Quench-Gone Aqueous kittm (QGA).  nd, not determined (due to small sample volume and high oil content).   

B.	
  SRB	
  Isolation	
  
 

 

Isolation	
  of	
  mixed	
  and	
  pure	
  SRB	
  cultures	
  from	
  the	
  COSC	
  and	
  OSP	
  samples	
  	
  
 

The initial efforts to isolate phage were based on classical methodologies that require 
pure cultures of each bacterial host to utilize as bait in phage hunts and to prepare overlays for 
plaque visualization.  The traditional method used to isolate bacteria in pure culture is the streak 
plate method, in which bacteria are subject to multiple rounds of colony isolation.  The 
assumption is that each colony originates from a single bacterial cell and develops into a clonally 
homogeneous population.  Initial efforts to purify SRB strains from the COSC and OSP samples 
involved preparing spread plates directly onto solid agar MPB plates.  Simultaneously, aliquots 
were inoculation of aliquots directly into liquid MPB media.  For bacteriological and DNA based 
diversity analysis, the 8 WD-73 samples were clustered into four groups, OSP.A (samples 1 and 
3), OSP.B (samples 2,4,5,7), OSP.C (sample 6), and OSP.D (sample 8) (Table 2).  Black growth, 
indicative of SRB activity, was observed only in the liquid media and not detected on solid media 
plates.  When aliquots of the SRB positive liquid enrichments cultures were used to prepare 
spread plates, black SRB colonies, as well as white non-SRB colonies, did form.  The initial black 
colony formation required between three and six weeks of incubation. Colonies of both the non-
SRB and SRB were subject to numerous rounds of colony purification.  The non-SRB strains 
from COSC white colonies on MPB were readily purified to homogeneity.  In contrast, even after 
between 10 to 20 rounds of colony streaking, SRB from both the COSC and OSP samples 
categorically propagated only as co-culture with the non-SRB.  The partially purified SRB 
cultures from the COSC sample were referred to as COSC (for “brine mud oil, black”) COSC.A1, 
COSC.A2, COSC.B1, COSC.B2, COSC.C2, COSC.D and COSC.2.  The purified non-SRB 
cultures were named (BmoW for “brine mud oil, white”) BmoW.31, BmoW.21, BmoW.23, 
BmoW.11, BmoW.13 and BmoW.4.  

 

COSC OSP Bacterial Strains 
Media 

Salinity Sequence ID φCOSC2 φCOSCD 
SRB 

phage**  
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COSC.2  6%, 10% D. halophilus (99%) *+ - - 

COSC.D1  6%, 10% D. halophilus (99%) - *+ - 

OSP.A1  2.5%, D. senesii (99%) - - - 

OSP.C1  2.5%, D. caledoniensis (99%) - - - 

OSP.D1  2.5%, D. senesii (99%) - - - 

OSP.A  2.5%, nd - - - 

OSP.B  2.5%, nd - - - 

OSP.C  2.5%, nd - - - 

OSP.D  2.5%, nd - - - 

COSC.A1  6%, 10% Haloanaerobium, Deltaproteobacteria SRB - - - 

COSC.A2   6%, 10% Haloanaerobium, Deltaproteobacteria SRB - - - 

COSC.B1   6%, 10% Haloanaerobium, Deltaproteobacteria SRB - - - 

COSC.B2   6%, 10% Haloanaerobium, Deltaproteobacteria SRB - - - 

COSC.C2   6%, 10% Haloanaerobium, Deltaproteobacteria SRB - - - 

COSC.D1 (COSCD1 source) 6%, 10% Haloanaerobium, Deltaproteobacteria SRB - *+ - 

COSC.2 (COSC2 source) 6%, 10% 
Halanaerobium praevalens, Desulfovibrio halophilus, 
Desulfovibrio frigidus, Bacteroides thetaiotaomicron *+ - - 

BmoW.31 6%, 10% nd* - - - 

BmoW.21 6%, 10% Clostridium spp. - - - 

BmoW.23 6%, 10% Clostridium spp. - - - 

BmoW.11 6%, 10% Clostridium spp. - - - 

BmoW.13  6%, 10% Clostridium spp. - - - 

BmoW.4 6%, 10% Haloanaerobium - - - 
Table 3.  Summary of OSP and COSC bacterial strain and phage isolation.  Bacterial strain, culture media 
salinity, taxonomic identification, and SRB phage sensitivity.  ** Ecolyse SRB phage collection tested: 
(fDala.1, fDala.2, fDala.3, fDala.4, fDala.CJ1, fEBS14.1, fEBS14.2, fEBS14.3, fEBS14.4, fEBS14.5, f 
EBS14.6, fEPF27, fEPF27.2, fEPF27.3, fEPF27.4, fWRF 20.1, fWRF20.2, fWRF20.3, fPDS.7).   

 
The observation that SRB could be propagated from the OSP and COSC samples, but 

only as co-cultures strongly suggested that culture conditions were not adequate for SRB growth 
as pure cultures and that the non-SRB is compensating for the limiting step in SRB growth.  This 
could possible due to nutrient limitations or due to physiological stress.  Physiological stresses 
that might impede SRB pure culture isolation include residual oxygen or a sub-optimal reducing 
environment. Multiple types of media and supplements were assayed in an effort to determine if 
nutrient limitations were responsible for the purification recalcitrance (Appendix B).  Media 
modifications evaluated included vitamin supplementation (thiamine, B12, PAPA), additional 
reducing agents and oxygen scavengers (resazurin, cysteine HCl) and even crude oil (data not 
show) in an effort to improve pure culture recovery.  

Once conditions for culturing SRB were better established, then pure strains of SRB from 
the COSC, OSP, as well as numerous additional oilfield samples were isolated.  Sequence 
analysis of the 16s rRNA gene in each of these indicated that COSC2 and COSC2 are most 
similar to Desulfovibrio halophilus. The 16s region sequenced was found to be 100% identical to 
nucleotides 364 to 877 of Desulfovibrio sp. (in GenBank entry GI:1297336).  Both of these 
species are 99% identical to the salt tolerant Desulfovibrio species, Desulfovibrio halophilus 
(159)  OSP.A and OSP.D are most similar to D. senesii, OSP.C is most similar to D. 
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caledoniensis.  Because of project time constraints, these partially purified cultures were utilized 
in downstream experimentation.  

	
  

C.	
  Bacterial	
  Diversity	
  from	
  COSC	
  and	
  OSP	
  
 

Bacterial	
  Diversity	
  Analysis	
  Using	
  Traditional	
  Methods:	
  DGGE	
  
 
 

Figure	
  1.	
  TGGE Population analysis of uncultured and cultured bacteria present in the COSC 
sediments.  Image is of an ethidium bromide stained, 8% urea,	
  8% acrylamide gel on which the 
16s rRNA gene sequences PCR amplified from bacterial DNA samples were resolved by 
temperature gradient gel electrophoresis. Lanes 1 through 6: SRB strains (COSC.A1, A2, B1, 
B2, C2, and D1); Lanes 10 through 15: non-SRB (BmoW.31, 21, 23, 11, 13, and 4) strains.   
Lanes 7, 8, 9: total bacteria from COSC sample at time of collection (T1), following a 2 month 
storage of the sample at 4oC (T2) or following enrichment for 7 days in 10% salinity MPB media 
(T3).  Lane 16: TGGE product from pure Desulfovibrio vulgaris DNA template.  Bands labeled A, 
(a1, a2, a3) b, c, d, e and f were excised from this gel for sequence analysis.  Taxonomic 
assignments based on these sequences are color-coded. 
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The initial approach used to simultaneously evaluate bacterial diversity in the COSC 

samples and to compare cultivated strains to the wild type populations were conducted by 
denaturing gradient gel electrophoresis (DGGE) based methodology called TGGE (temperature 
gradient gel electrophoresis (Figure 1).  This approach is based on determining the 16s rRNA 
complexity in a sample by electrophoresis of the 16s rRNA PCR product on a denaturing gel.  
Resolution into more than one band implies a mixed rRNA sequences are in the sample, 
suggestive of more than one type of bacteria. DNA was isolated from six the colony-purified SRB 
cultures (COSC.A1, A2, B1, B2, C2, D), and six colony-purified non-SRB cultures (BmoW.31, 21, 
23, 11, 13, 4).  As a control, 16s PCR products using total DNA from the COSC sample as well 
as from a pure culture of Desulfovibrio vulgaris str. Hildenborough as template was analyzed 
simultaneously. For analysis of the total bacterial population in the COSC sample, total bacterial 
DNA was isolated from the anoxic brine sediment following three storage conditions: T1 (within 
one week of collection of the sample and storage at 4oC, considered to be the most similar to the 
initial environmental sample), T2 (following a two month incubation of the unprocessed 
environmental sample at 4o C) and T3 (following incubation of 1 ml of the sample for 7 days in 
MPB 10% salinity media at 22oC).   

As expected, the total bacterial fractions T1, T2, and T3 are complex, with multiple 
bands.  All three samples possessed a brighter band (A) with a medium migration rate (bands 
a1, a2, and a3) as well as several bands that exhibited the fastest migration rates.  Samples T1 
and T2, corresponding to bacterial DNA isolated from the unprocessed sample at one week and 
two months storage at 4oC, were more similar to each other then to sample T3, which had 
undergone incubation in MPB 10% salinity media for one week.  Sample T3 possessed novel 
high intensity bands clustered at two positions on the gel, bands b, c, and f. Each of the SRB 
cultures resolved at least two distinct bands while only a single band was present for each of the 
non-SRB cultures.  For comparison, the product derived from amplification of the 16s gene from 
D. vulgaris migrated as a single, fast moving species that co-localized on the gel with the fastest 
migrating bands from the SRB cultures and the total bacterial population samples.  This suggests 
that the SRB cultures contain a population that includes at least one member similar to D. 
vulgaris and one member similar to the non-SRB pure culture BmoW.4.  Bands from three of 
non-SRB, colony purified cultures BmoW.31, BmoW.21, and BmoW.23 were found to be 100% 
identical with each other and were determined to be Clostridial species whose closest 
characterized relative was identified as forming a lactate degradation pathway along with SRB 
including Desulfobulbus spp. in sulfidogenic bioreactors (158).  The mixed SRB cultures were 
determined to be a deltaproteobacterial SRB and a Haloanaerobium.  This was determined by 
pyrosequencing the COSC.2 culture was found to be composed of Desulfovibrio species, 
primarily D. halophilus but also very low levels of D. frigidus as well as a Haloanaerobium most 
similar to H. praevalens. 

Bacterial genera present in the different samples was determined by excising seven of 
the bands resolved by TGGE (Figure 1 bands a1, a2, a3, b, d, e, and f), re-amplification of the 
16s PCR product, and sequencing. This resulted in sequences TGGE.A1, TGGE.A2, TGGE.A3, 
TGGE.B, TGGE.C TGGE.D, TGGE.E, TGGE.F, respectively. Sequences derived from the non-
cultured bacterial genera in the total bacterial populations were analyzed, bands a1, a2, and a3 
represent the major band present in both the newly isolated and cultured in the mixed bacterial 
population samples.  The closest relatives of these bacteria present in the public database were 
also identified by culture-independent 16s analysis performed on other hypersaline 
environments, including the anoxic hypersaline mats from the Mediterranean and hypersaline 
sediments from the Great Salt Lakes, Utah (69, 91).  These bacteria appear to be members of 
the Bacteroidetes.    The sequence derived from band c, which became evident only following 
total enrichment culture indicated they were derived from Salinovibrio sp.  Salinovibrio are 
gammaproteobacteria somewhat related to pathogenic Vibrio spp.  Salinovibrio spp are 
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facultative anaerobes frequently isolated from saline soils, lakes, and even salt preserved foods.  
These bacteria are not considered at target organism for control. The slowest and fastest 
migrating bands from enrichment culture T3 co-migrated with bands from the purified bacterial 
cultures.  The sequence from the slowest migrating band, f was found to be only two nucleotides 
different from pure culture strain BmoW.4.  These were found to be 99% identical to 
Haloanaerobium species and uncultured clones identified in several metagenomic analysis of 
high salinity, anoxic environments.  Haloanaerobium species have been isolated from other high 
salinity, petroleum associated locations and have also been demonstrated to engage in 
interspecies hydrogen transfer (19, 94).  Some Haloanaerobium have been shown to be sulfur 
and thiosulfate reducing bacteria but are not sulfate reducing bacteria (110).  Visual analysis of 
chromatograms from the mixed SRB cultures clearly indicated that a Haloanaerobium sequence 
was present in all of the isolated SRB cultures for which sequence data was obtained (COSC. 
A1, A2, B1, C2).  Finally, two of the sequences obtained from the fastest migrating bands in 
sample T3, TGGE.D and TGGE.E were found to be 88% identical to each other with 460 out of 
522 nucleotides matching.  A comparison with the public database revealed that they were both 
likely derived from sulfate reducing bacterial members of the deltaproteobacteria.  The sequence 
of TGGE.E was found to be >97% identical to genebank entries from numerous uncultured 
deltaproteobacteria isolated from a variety of high saline environments including the anoxic 
sediments of a Mediterranean saltern hypersaline microbial mat from Puerto Rico,(60) and a 
hypersaline lake in Tibet (60, 63, 91).  The most closely related bacterium from a cultured 
sample was found to be Desulfovibrionales enrichment culture clone SLAb1-3 (12).  This sulfate 
reducing bacteria was isolated using enrichment in lactate-arsenate medium from Searles Lake 
in California, a salt saturated, alkaline, high arsenate and high borate content body of water.  The 
sequence of TGGE.D was found to be 99% identical (511/513 bp) to Desulfohalobium retbaense 
DSM 5692 16s rRNA sequence.  D. retbaense DSM 5692 is a deltaproteobacteria isolated from 
saline sediment from Retba Lake in Senegal, Africa (98).  Other Desulfohalobium species 
include the sulfate reducing bacteria Desulfohalobium utahense, isolated from the high salinity 
Great Salt Lake (62).   
 

Bacterial	
  Diversity	
  Analysis	
  Using	
  Metagenomics	
  Approach	
  
 

SRB Diversity in COSC and OSP Samples. 
The low resolution of bacterial populations afforded by the utilization of DGGE was determined to 

be insufficient for elucidating bacterial diversity of the RPSEA samples.  Therefore, a new approach was 
utilized based on a metagenomics approach first established for medical samples.  This approach, called 
454 or pyrosequencing, is based on shotgun sequence analysis of 16s rRNA amplicons (Figure 2).   
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Figure 2.  Overview of the Pyrosequencing workflow and data analysis pipeline. 
A. Generating the data:  Total DNA is isolated from an environmental sample containing numerous different 
types of bacteria, where each type might be present at widely different percentage of the population.  A 454 
library is then generated from the DNA utilizing a PCR based method.  Sequencing reactions are conducted at 
a scale of between 2,000 to 10,000 sequences; each sequence being generated from a single bacteria in the 
starting sample. 
B. Analyzing the data:  The raw sequences are matched to potential source bacterial identifications by 
comparing to a ribosomal database derived from known bacterial strains, as well as from other environmental 
shotgun sequences.  The frequency of the occurrence of any given species is directly correlated to the 
concentration of those bacteria in the starting sample. Identified bacteria are matched to a database of 
metabolic traits of relevance to the oil industry.  Then, the diversity (how many types), distribution (where found) 
relative abundance (percentage of overall population) can be evaluated.   
 
 

Pyrosequencing results in thousands of individual DNA sequences from each sample, each 
individual DNA sequences originated from a single bacterial cell in the starting sample (Figure 2).  
Shotgun pyrosequencing of 16s amplicons is far superior to DGGE, or cultivation methods such as 
MPN analysis, because the method is less biased and provides details on a much higher number of 
individual bacteria.  These traits confer statistical robustness to the data.  Even unculturable bacteria 
comprising as little as 0.01% of the population (1 cell per every 100 cells) can be robustly identified 
99% of the time through sequencing as few as 1,000 bacterial cells.   

Low-level pyrosequencing runs were performed on samples COSC (12/4), COSC (2/25), 
OSP.A, OSP.B, OSP.C, and OSP.D.  Between 2,447 and 5,763 individual bacteria were analyzed 
from each sample, for a total of 22,499 bacteria screened in all (Table 3, Appendix C).  From these 
22,499 bacterial sequences, 246 sequence clusters were generated, each one corresponding to an 
operational taxonomic unit, or species.  The number of species identified in each sample varied from 
70 to 108.  Most bacterial species identified were present as “low abundance” organisms, with 223 of 
the 246 species being present at less than 1% of the total population in any one sample.  Only 23 
species were present at greater than 1% of the population of any one sample (Table 4).  The most 
abundant bacteria overall were members of anaerobic fermentative and sulfidogenic genera such as 
Halanaerobium, Cytophaga, Halocella, Pelobactera, Desulfohalobium, Desulfonauticus, and 
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Desulfovibrio.  Several species, including Haloanaerobium saccharolyticum, Desulfovibrio 
gabonensis, as well as uncharacterized Anaerophaga, Peptostreptococcaceae, and Lactobacillus 
species, were present in all six samples.   

 
 

Sample: 
COSC 12/4 

Eco-4 
COSC 2/25 

Eco-5 
OSP.A 
Eco-8 

OSP.B 
Eco-9 

OSP.C 
Eco-10 

OSP.D 
Eco-11 Total 

# Bacteria Analyzed: 2573 3810 2776 5130 5763 2447 22,499 

# Species Identified: 62 108 70 105 77 105 246 
        

Metabolism: abundance (% of population) ; diversity (number of species) 
Sulfidogens 9.66% ; 13 10.08% ; 23 54.1% ; 14 51.75% ; 26 75.67% ; 24 54.5% ; 23 42.6% ; 47 

SRB 9.62% ; 12 10.02% ; 21 8.13% ; 10 4.54% ; 21 3.33% ; 19 6.49% ; 13 7% ; 36 
Ferm + APB 7.24% ; 15 69.01% ; 24 18.75% ; 16 22.87% ; 19 16.35% ; 14 14.12% ; 18 24.7% ; 37 

Biodeg 62.85% ; 6 15.57% ; 9 5.26% ; 5 1.97% ; 11 0.87% ; 8 10.25% ; 16 16.1% ; 22 

Fe(III)RB 0% ; 0 0.03% ; 1 15.74% ; 3 21.1% ; 7 5.09% ; 4 14.46% ; 6 9.4% ; 9 

other 20.31% ; 28 5.48% ; 51 6.21% ; 32 2.39% ; 42 2.05% ; 27 6.58% ; 42 7.02% ; 131 
Table 4. Metagenomic analysis of COSC and OSP Bacterial Populations.  The total number of bacteria 
analyzed from each sample is given, along with the corresponding number of unique species identified.  
These species were classified by metabolic traits, shown both as a percent of the total population and the 
number of unique species that exhibit the indicated metabolic trait. Metabolic abbreviations: APB, acid 
producing bacteria; BioDeg, biodegradation of atypical substrates (for example, hydrocarbons), Fe(III)RB, 
iron reducing bacteria; ferm, fermentative; NRSOB, nitrate reducing, sulfur oxidizing bacteria; sulfidogen- 
hydrogen sulfide generating; SRB, sulfate reducing bacteria.  Taxonomic breakdown at a Class level is 
also given, with percent of total population and number of unique species. 

 
Metabolic Assignments 

Metabolic assignments were given to 145 of the 246 species identified in the six 
samples (Table 4).  This included all bacteria present in at least 1% of the total 
population of at least one sample. In all, over 98% of the bacteria present in the six 
samples received some level of metabolic classification (Table 4).  The metabolic 
annotations are included in the table containing all identified species in the project 
(Appendix C).   

 
Sulfidogenisis and Iron Reducing Bacteria 

The metabolic pathways of most interest to the oilfield community are those that 
generate significant levels of hydrogen sulfide.  Sulfate reducing bacteria (SRB) are 
particularly aggressive at sulfide production and are the group of bacteria most 
commonly implicated oil filed biogenic sulfide production (8).  However, sulfur- and 
thiosulfate- reducing bacteria (SuRB and TRB, respectively) can also generate 
significant levels of H2S and contribute to corrosion and souring (3) (80).Compared to 
SRB, the TRB are harder to classify based on taxonomically as they are members of 
bacterial genera that can include non-tSRB members.  Examples of sulfidogenic TRB 
commonly found in oilfield samples include Halanaerobium congolense, as well as some 
Thermoanaerobacter, and Spirochaeta. 
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All six RPSEA samples contained significant levels of sulfidogenic bacteria, both 
in terms of relative abundance in the total population and in terms of species diversity.  
Overall, over 42% of all bacteria identified, encompassing 47 unique species, were 
capable of hydrogen sulfide generation.  True, sulfate-reducing bacteria were the most 
abundant sulfidogens in the two COSC samples, composing around 10% of each 
sample.  SRB present in the COSC samples included Desulfobotulus, Desulfonauticus, 
Desulfovibrio, and Desulfocaldus, Desulfosalina.   

In contrast to the COSC sample, even though “true SRB” were present in the OSP 
samples, the most abundant sulfidogenic species detected in all four OSP combined 
samples was most closely related to a thiosulfate, and sulfur reducing species, 
Halanaerobium congolense.  H. congolense was first identified in a produced water 
sample from a Congo offshore oil field (111).  
 
Iron reducing bacteria 

Many bacteria have the capacity to directly solubilize iron.  For example, 
Shewanella species produce chelators that solubilize Fe(III) oxides (Lovley et al, 2004).   
Additionally, Shewanella is capable of growing in corrosive biofilms. Shewanella has also 
been shown to remove the protective H2 film layer that normally protects iron surfaces 
from corrosion under anoxic conditions.  The OSP samples were particularly enriched in 
two iron reducing bacterial genera: Pelobacter and Geobacter.  Along with 
Desulfuromonas species, which are both sulfidogenic and iron reducing, nine different 
iron reducing species were found to comprise between 5% and 21% of all bacteria in the 
sample.  In contrast, iron-reducing bacteria constituted only negligible percentage of the 
COSC sample populations. 
 
Fermentative and Acid Producing Bacteria 

Acid producing bacteria (APB) are of specific interest to the oilfield community as 
acid production directly and aggressively promotes corrosion.  Several metabolic 
pathways result in the production of acids, including fermentative pathways that generate 
organic acids such as lactic acid and acetic acid, as well as those that generate sulfuric 
acid as a byproduct of the oxidation of inorganic sulfur compound oxidation.   It should 
be noted that not all fermentative pathways result in acidification, and the identification of 
a bacteria as acid producing does not necessarily indicate acidification of bulk fluids.  In 
particular, the link between fermentative pathways and environmental acidification 
requires more research to clarify.  Because of this, fermentative and acid producing 
bacterial levels are reported together, even though not all bacteria included in this 
classification contribute to bulk acidification. 

A total of 37 species were annotated as acid producing bacteria and/or 
fermentative.  The percentage of the population in the four OSP samples ranged from 
14% to almost 25%, with between 14 to 19 species annotated as such in each sample.  
The majority of these were Halanaerobium species.  With in the COSC samples, the 
population that emerged from the sample after two months storage at 4oC was 
significantly enriched in Halocella, which increased from 4% of the population in COSC 
12/4 to 51% of the population by 2/25.  This population profile switch was balanced by a 
reduction in the relative levels of hydrocarbon degrading Cytophaga in the sample, which 
declined from 62% to 12% during the two months of storage.   
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Hydrocarbon Degrading Bacteria 

Hydrocarbons, including alkanes, alkenes, aromatic hydrocarbons, and waxes, 
are found naturally in great variety in crude oil and other petroleum compounds.  Due to 
their structural diversity, most bacteria lack the capacity to utilize petroleum 
hydrocarbons as food sources.  Each type of hydrocarbon-degrading microorganism is 
likely to be capable of metabolizing a few specific types of hydrocarbons.  The sample 
with the highest proportion of biodegrading species was the initial COSC sample, at 62% 
of the population- primarily due to the already mentioned abundance of Cytophaga in this 
sample.  Abundant genera in the samples include Marinobacter and Paenibacillus.   
 

 

Species COSC 
12/4  

COSC 
2/25  

OSP.
A  

OSP.
B  

OSP.
C  

OSP.
D  Metabolism Lookup Ref 

Halanaerobium 
congolense 0 0 44.92 46.84 72.18 46.71 

Sulfidogen, TRB, Ferm  (111) 

Cytophaga sp 62.3 12.5 1.04 0.51 0.15 0.94 BIoDeg HC, oilfield (113) 

Halocella sp 4.59 51.6 1.12 0.14 0.67 0.65 Ferm, oilfield (108) 

Pelobacter sp 0 0 11.38 19.69 4.83 12.38 Fe(III)RB (76) 

Halanaerobiaceae sp 0 0.37 8.32 8.21 2.73 4.54 Ferm (99) 
Halanaerobium 
saccharolyticum 1.75 9.69 2.52 3.8 3.51 2.57 

Ferm, promotes sulfidogens (68) 

Halanaerobium sp 0 2.7 3.75 6.34 4.55 3.56 Ferm, promotes sulfidogens (61) 
Halanaerobium 
acetethylicum 0 2.23 1.08 3.76 4.26 1.8 Ferm, promotes sulfidogens (99) 
Desulfohalobium 
retbaense 0 0 5.66 2.36 0.58 3.02 

Sulfidogen, SRB (125) 

Pseudomonas sp 7.93 1.5 0.79 0.45 0.17 0.57 BioFilm (109) 
Desulfonauticus 
autotrophicus 1.17 6.25 0.04 0.02 0 0 Sulfidogen, SRB (85) 

Geobacter sp 0 0 4.32 1.15 0.17 1.72 Fe(III)RB (76) 

Paenibacillus sabinae 0.12 1.92 2.09 0.66 0.29 2.17 BioDeg PAH (64) 

Desulfobotulus sp 6.45 0.55 0 0 0 0 Sulfidogen, SRB (121) 

Deinococcus sp 5.01 0.37 0 0 0 0 unkwn radiation resistant (26) 

Marinobacter sp 0 0 0 0.21 0.09 4.82 BioDeg HC (154) 

Desulfovibrio sp 0 0.05 1.12 1.01 1.14 1.19 Sulfidogen, SRB (8) 

Leptotrichia sp 3.85 0.31 0.04 0.04 0 0 pathogen (33) 

Arcobacter sp 0.04 0 0.29 0.29 0.72 1.63 NRSOB (57) 
Desulfovibrio 
gabonensis 0 0.03 0.54 0.41 0.17 1.19 

Sulfidogen, SRB (139) 

Sphingomonas sp 0 0 1.73 0.27 0.1 0.16 BioDeg phenanthrene (55) 

Peptostreptococcaceae  0 0.21 0.25 0.1 0.2 1.14 BioFilm MIC (13) 
Desulfuromonas 
palmitatis 0 0 0.9 0.25 0.1 0.57 

Sulfidogen, SuRB Fe(III)RB (76) 
Mariprofundus 
ferrooxydans 0 0 1.08 0.33 0.12 0.29 

Fe(II)OX MIC iron corroding (86) 

Desulfocaldus sp 0.74 0.87 0 0 0.02 0.04 Sulfidogen, SRB (88) 
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Desulfosalina sp 0.47 0.52 0 0 0.09 0.08 Sulfidogen, SRB (1) 

Caminicella sp 0 0 0.86 0.04 0.2 0.04 Ferm thermophile spore-former (4) 

Paenibacillus sp 0.08 0.26 0.29 0.16 0.05 0.25 BioDeg PAH (50) 

Desulfovibrio capillatus 0 0 0 0.1 0.7 0.2 Sulfidogen, SRB (90) 
Table 5.  Bacterial species present at more than 1% (green) of the total population of 
samples COSC (one week post collection), COSC (one month post collection), and OSP.A, 
OSP.B, OSP.C, and OSP.D are listed, along with the percent abundance in that sample and 
metabolic assignments. Metabolic abbreviations: Ferm, fermentative; SuRB, sulfur 
reducing bacteria; TRB, thiosulfate reducing bacteria;  BioDeg, biodegradation of atypical 
substrates such as HC (hydrocarbons), PAH (polyaromatic hydrocarbons), and complex 
polysaccharides; Fe(III)RB, iron reducing bacteria; NRSOB, nitrate reducing, sulfur 
oxidizing bacteria.  Yellow are MIC associated species.  

 
Conclusions From Bacterial Diversity Analysis 

The rationale and practical use of bacteriophage to control problem bacterial populations 
requires a working knowledge of the target bacteria (Table 5).  For human pathologically 
significant bacteria, a large body of literature on types and abundance of bacteria that cause 
specific problems is available. The strikingly difference in the bacterial population following a 
one-week enrichment in culture media was not unexpected. It should be noted, however, that 
while all identification methods are inherently biased, culture-based methods are considered to 
be particularly prone to bias (31). However, the population of bacteria identified in this sample, 
even after culturing, was similar to bacteria isolated from other anoxic, high saline locations 
ranging from Tibet to Africa and North America.  This suggests that it should be possible to 
generate reasonable predictions of the SRB population profile of high saline, oil rich 
environments, which will be important for genera specific control.  	
  

D.	
  Analysis	
  of	
  Temperate	
  SRB	
  Phage	
  Diversity	
  

Phylogenetics	
  of	
  Sequenced	
  SRB	
  
The diversity of SRB identified in the COSC and OSP samples raised concerns about 

whether or not phage capable of infecting all these SRB types could be identified.  The metabolic 
capacity for energy extraction from sulfate reduction is present in isolated lineages within several 
taxonomically diverse clades, including some members of the Gram-negative class 
Deltaproteobacteria, some members of the Gram positive Firmicute family Peptococcaceae, as 
well as several deep branching bacterial classes such as the Thermodesulfobacteria and 
Thermatogales.  Therefore, the relevance of this collection of SRB phage to all SRB organisms 
needed to be established by analyzing the diversity of SRB.  The collection of SRB genomes 
was extracted from the public database.  Only “true SRB” were analyzed, as defined as bacteria 
encoding recognizable dissimilatory sulfite reductase genes A and B (DsrAB) homologues were 
included.  This, therefore, does not include other sulfur-respiring organisms, for example sulfur 
and thiosulfate reducing bacteria such as Haloanaerobium (110) .  A total of 32 whole genome 
entries were identified as originating from sulfate reducing bacteria (Appendix D).  The DsrA and 
16s rRNA sequences from the sulfate-reducing archaea, Archaeoglobus, was used as the 
outgroup.  With 24 entries, the majority of SRB whole genome entries were members of the 
Deltaproteobacteria, and the order Desulfovibrionales was most frequently samples (17 
members included).  Only five members of the have been sequenced.  It has been recently 
observed that some members of the Peptococcaceae possess DsrAB genes that appear to be 
the result of a recent lateral gene transfer from a Proteobacteria (70, 88, 149, 160).  In order to 
determine if sequenced Peptococcaceae include representatives of members with vertically and 
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horizontally acquired DsrAB genes, a neighbor joining tree was made from the DsrA proteins 
sequences and 16s rRNA gene sequences from the fully sequenced sulfate reducing bacteria.  
The tree results are consistent with published DsrA and 16s trees (70, 88, 149, 160), and show 
that three of the sequenced Peptococcaceae species have the vertically transmitted DsrA gene 
and two have the horizontally acquired DsrA genes Only one genome entry, the Nitrospira, 
Thermodesulfovibrio yellowstonii DSM 11347, originated from a non-Proteobacteria, non-
Firmicute clade.  

SRB	
  Prophage	
  Identification	
  
 

In order to extend the information on SRB phage, prophage elements in the genomes of 
32 sulfate reducing bacteria were identified.   A total of 46 prophage elements were identified in 
22 of the 32 genomes (Appendix D, Appendix E, Appendix F).  Many of these contained genes 
encoding structural proteins with significant amino acid sequence similarity to the most common 
types of bacteriophage (lambda, Mu, and P2).  The majority of these, 25, were predicted to 
encode phage with contractile tails (myophage), similar to P2 and Mu. Ten of the prophage 
elements are likely to encode a flexible tailed phage, similar in morphology to lambda.  Finally, 
two of the prophage were predicted to encode the structural genes of a short tailed, podophage 
morphology.  Morphological predictions could not be made for the remaining elements.  This 
indicates that tailed phage are common among the SRB.  These phage sequences will be used 
to develop molecular tools to identify at least the most abundant phage types.  

The search criteria limited prophage elements only to those encoding proteins related to 
phage already present in the public database.  As it is not uncommon for newly discovered 
phages to encode primarily proteins not related to any in the public database, it is not expected 
that this criteria will result in a comprehensive list and there are undoubtedly as-yet unidentified 
prophage elements in at least some of the SRB genomes surveyed.  Identified SRB prophage 
elements were mostly related to P2-like and Mu-like myophage, followed by lambdoid 
siphophage and last by podophage. This distribution of phage morphotypes may be biased is 
due to the search criteria used. Due to the complexity of contractile tail morphogenesis, P2- and 
Mu-like myophage encode more structural proteins then do siphophage or podophage, making 
them more likely to be recognized.  Podophage encode the least number of structural proteins 
and may have the smallest genomes of the three phage morphologies, as a result podophage 
prophage elements were most likely to have been overlooked.  The most significant impediment 
to using an annotation-dependent method is that the RefSeq annotations may be incomplete or 
inaccurate.  Despite there being hundreds of phage sequences in the public database, and a list 
of protein types that are frequently encoded by a phage, protein functional annotations based on 
similarity searches against proteins of known function still result in only limited and partial 
annotations.  In part, this is due to some phage genes having undergone such extreme 
divergence that authentic homologous proteins share no amino acid similarity.  The extreme 
diversity of homologous proteins is most obvious for phage major capsid proteins, which share 
the same fold despite there being hundreds of unrelated sequences .  Additionally, phage may 
possess any one of many analogous but unrelated proteins that carry out the same function, the 
most obvious examples of this being the presence of either a Clp-type or herpesvirus-type 
protease in the prohead protease protein (23).   

 

E.	
  Isolation	
  of	
  Novel	
  Phage	
  Active	
  Against	
  COSC	
  SRB	
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Phage	
  Enrichments	
  
Due to project timeline constraints, the SRB/non-SRB co-cultures established from the 

COSC sample were utilized for phage isolation. Two bacteriophage, ϕCOSCD and ϕCOSC2, 
were isolated from the same BM sample that the host strains were isolated from. These phage 
form large, clear plaques on lawns of COSCD and COSC2, respectively (Figure 3).  Plaques 
took an average of 5 days to appear on bacterial overlays.  This time frame is consistent with the 
length of time it takes for bacterial growth in the overlay to be apparent.  A dilution series of the 
phage was made to determine the concentration of phage in the enrichment.  The titer of phage 
in the original enrichment was found to be 1.5 X 105 plaque forming units (pfu)/ml enrichment.  In 
an effort to generate a high-titer lysate, 9 agar plates were prepared with overlays containing 104 
pfu phage with the host bacteria.  Following a 10 day incubation at room temperature, a 40 ml 
lysate was prepared from these plates.  Spot titering indicated that the lysate contained 108 
pfu/ml ϕCOSC2.  Upon isolation of COSCD and COSC2 SRB as pure cultures, it was 
demonstrated that the cognate phages formed plaques on lawns of the purified SRB (data not 
shown). 

 
 

Figure	
  3.	
  	
  Phage active against mixed host lawns of COSCD and COSC2.  phiCOSCD: Soft 
agar overlay containing the initial COSCD mixed culture (Desulfovibrio halophilus and 
Halanaerobium preaevalens) and phage phiCOSC.D.  phiCOSC2: Soft agar overlay containing 
the initial COSC2 mixed culture (Desulfovibrio halophilus and Halanaerobium preaevalens) and 
phage phiCOSC.D.Plaques in this lawn are indicative of phage activity.  	
  

	
  

Phage	
  Host	
  Range	
  Analysis	
  
Host range analysis was performed by spotting 1.5 X 104 pfu of ϕCOSCD and ϕCOSC2 

onto overlays prepared from five of the COSC SRB cultures.  No clearings were observed on any 
of the overlays except on the specific enrichment host, e.g. ϕCOSC2 forms plaques only on 
overlays of host COSC2 and ϕCOSCD forms plaques only on overlays of host COSCD.  A 
collection of SRB phages assembled against collections of oilfield SRB was screened for activity 
against the complete COSC and OSP host collections.  These phages included φDala.1, 
φDala.2, φDala.3, φDala.4, φDala.CJ1, φEBS14.1, φEBS14.2, φEBS14.3, φEBS14.4, φEBS14.5, φ 
EBS14.6, φEPF27, φEPF27.2, φEPF27.3, φEPF27.4, φWRF 20.1, φWRF20.2, φWRF20.3, 
φPDS.7, φCOSC2, φCOSCD.  None of these additional SRB phage demonstrated plaque-
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forming activity against the COSC samples.  Similarly, phage ϕCOSCD and ϕCOSC2 failed to 
form plaques on overlays of 16 additional sulfate reducing bacteria, including additional de novo 
SRB isolates as well as ATCC strains of Desulfovibrio longus, D. gabonensis, D. desulfuricans, 
D. vulgaris, and D. alaskensis (data not shown).   
 
Isolation and propagation of phage against a mixed culture. 

The relative ease in which phages were isolated using mixed cultures for enrichments 
was unexpected. Phage capable of infecting both types of bacteria are not expected to exist, 
given the narrow host range of phage.   both a Firmicute, such as Haloanaerobium and a 
Deltaproteobacteria like Desulfovibrio, are not expected to exist so it is unlikely that the phage 
infects both bacteria.  If only one member of the bacterial population serves as a host, then 
plaques should not be visible on agar overlays due to over growth of the non-host bacteria.  
Alternatively, the presence of clear plaques is indicative of the strong co-culture dependence of 
the different bacteria, and the phage- mediated killing of one type results in growth inhibition the 
other. This has implications beyond the scope of this project.   The manipulation of phage and 
bacteria in pure culture is the hallmark of traditional approaches to microbiology.  While the 
classical “one bacteria/ one disease” model is extremely useful, many diseases, in particular 
chronic wounds are the result of microbial communities rather then single pathogens (153).  
Biofilm and biofilm communities are known to play an important role in industrial microbiology 
and these systems have more in common with a chronic wound model then what is thought of as 
a typical, acute bacterial infection.   Bacteria in mixed culture do not necessarily respond to 
bactericidal treatments the same was as the same bacteria in a pure culture and thus mixed 
culture experiments might be expected to be a better indicator of treatment response as the in 
situ populations. 

The relative ease in which functional, active phage were isolated against a newly 
established SRB culture, and the abundance of prophage elements in the genomic sequences of 
SRB, indicate that phage active against members of even a complex SRB community are 
abundant. These results supports our original contention that it is possible to cultivate phages 
against members of a sulfate reducing, petroleum enriched environments and provides a 
framework with which to develop their exploitation as environmentally benign anti-microbials.   
(94, 118) 
 

Phage ϕCOSCD Morphology 
Particles of phage ϕCOSCD were visualized by electron microscopy (Figure 4).  The 

phage were revealed to have icosahedral heads and short tails, indicating that they are of the 
podoviridae morphology.  The head size was calculated to have an average diameter of 70 nm.  
This morphology is typical of tailed phage.   

	
  

 

Figure 4. Electron micrograph of phiCOSCD particles, revealing a short tailed (podoviridae) morphology.  
Scale bare is 100 nm.   
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Phage Control of SRB Efficacy Testing  
 

Phage control in mixed host cultures 
 

The ability of phage ϕCOSC2 to control host COSC2 (mixed) SRB levels was determined 
in liquid cultures.   To conduct this experiment, 8 duplicate serial 10-fold dilutions of host COSC2  
were prepared in 10 ml culture bottles (Figure 5).  The starting inoculum of the serial dilutions 
was determined to be 1010 cfu/ml.  Immediately following host inoculation, 100 ml of phage 
ϕCOSC2 stock (at 107 pfu/ml) was added to four of the eight dilution series.  Growth of SRB was 
scored after 30 days.  Black precipitates indicate positive SRB growth. After 30 days of growth, 
the untreated inoculums had grown in cultures diluted to 1010 fold.  In contrast, 3 of the four 
phage treated dilutions exhibited growth only to the 103 dilutions.  This indicated that phage to 
host rations, or multiplicity of infection, of 10 or greater was sufficient to eliminate all SRB in the 
starting sample.   
 
 
 

 
Figure 5.  ϕCOSC2 Efficacy Trial.  Effect of different phage/ host ratios. Host COSC2 was serial diluted to 10-11.  
Phage treated samples (+) were inoculated with 107 ϕCOSC2 while the no phage control (-) did not receive 
phage.  Image of cultures at 30 days after inoculation. 

 
 
 
Control of pure Desulfovibrio strain COSC.D by phage ϕCOSC.D 

Phage ϕCOSC.D was shown previously to control H2S produced by mixed culture 
COSC.D (130).  In order to determine if phage ϕCOSC.D is capable of controlling H2S 
production by pure Desulfovibrio strain COSC.D, serial dilutions of pure culture were set 
up in 6% MPB in serum bottles.  The serial dilutions correspond to inoculation levels of 
109 bacteria down to an end point dilution.  One set of bottles were challenged with 106 

Host	
  SRB	
  COSCD2	
  Inoculum	
  (ml)	
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phage plaque forming units (pfu) while a duplicate control set was not challenged with 
phage (Figure 5).   The cultures were incubated and the rate of SRB growth scored by 
the appearance of black iron sulfide precipitate.  At the end of 31 days incubation, the 
series of control bottles that did not receive phage treatment showed evidence of growth 
all the way down to the 109 dilution, indicating that the original culture contained around 
109 bacterial cells per ml.  In contrast, the series of bottle challenged with 106 pfu each 
exhibited growth only in the initial bottle that had received one ml of 109 bacteria per ml.  
All of the remaining bottles failed to show any evidence of SRB growth as evidenced by 
H2S production, even after more than three months incubation following treatment 
(Figure 6).    

 

  
Figure 6. Control of Desulfovibrio strain COSC.D by phage ϕCOSC.D.  Note that volume differences are 
due to the removal and testing of samples for phage levels at various time points (data not shown). 

 
Several additional phage efficacy trials gave similar results, with low levels of 

phage controlling SRB growth for extended periods.  However, the capacity of low moi to 
control host levels was not achieved with every trial.  When the experiment was 
repeated, moi of 1 or greater was required to control host levels for 30 days (Figure 7).  
In this experiment, four replicates of phage treated and control (no phage treatment) 
samples were set up in parallel.  After 30 days incubation, SRB growth was evident in 
phage treated samples where the initial phage moi was 10 or less.  The reason for the 
variations in phage efficacy is unclear.  However, phage treatment was sufficient to 
eradicate the SRB host and the effect was observed, even after several months 
incubation (Figure 7 and data not shown).  A difference between the two experiments 
was the concentration of host in the initial inoculum; experiment 2 levels were 10 fold 
higher then in experiment 1.  This might be correlated to an even higher concentration of 
H2S in the initial inoculum, which might have inactivated at least some of the phage, 
resulting in an even lower effective moi.  Clearly, more research is needed to understand 
the root cause of the variability in the effectiveness of   phage control of SRB. 
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Figure 7. ϕCOSCD2 Efficacy Trial.  Effect of different phage/ host ratios. Host COSCD2 was serial diluted to 
10-11.  Phage treated samples (+) were inoculated with 106 ϕCOSC2 while the no phage control (-) did not 
receive phage.  Image of cultures at 30 days after inoculation.  Image is of the culture vials, black indicates 
SRB growth. 

 
Biocide treatments may not completely kill bacterial populations in part because of the 

capacity of bacteria to recover from damage or due to the presence of a sub-population of 
phenotypically resistant cells.  A phage preparation was shown to effectively control SRB 
populations for several months following treatment.  The use of phage is complicated by the 
extremely diverse populations of SRB present in oilfield samples.  New approaches must be 
developed to take advantage of the bacteriolytic nature of phages while over coming the 
challenges of limited host range	
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Conclusions	
  
The	
  conclusion	
  should	
  not	
  simply	
  reiterate	
  what	
  was	
  already	
  stated	
  in	
  the	
  “Results	
  and	
  
Discussion"	
  section,	
  but	
  should	
  summarize	
  what	
  has	
  been	
  performed	
  in	
  the	
  project,	
  and	
  
include	
  any	
  implications	
  of	
  how	
  the	
  successes	
  are	
  relevant	
  to	
  technology	
  development	
  in	
  the	
  
future.	
  
	
  

• RPSEA funds were obtained for use in evaluating the potential of utilizing bacteriolytic 
phage as SRB control agents 

• Understanding target bacterial populations is critical for developing phage based control 
products 

• Two sample locations were chosen for analysis: COSC and the OSP 
• Bacterial population analysis was conducted on the COSC and OSP samples 
• 47 species of sulfidogenic bacteria, constituting 36% of all bacteria in the samples, were 

identified 
• 36 species were classified as “true sulfate reducing bacteria” 
• Iron reducing bacteria were also present in significant numbers in the OSP samples 
• SRB strains were cultured from the COSC and OSP samples 
• 46 new prophage elements were identified in the genomes of sequenced SRB 
• New phages capable of killing the COSC SRB were isolated 
• The effective dose of phage required to control SRB growth varied dramatically between 

experiments.   
• The reasons for the variable dose requirements are not understood and are the subject of 

future research efforts.  
• Phage treatments resulted in the extended control of SRB levels, as compared to 

untreated samples, and thus holds promise as a biopesticide for use in the petroleum 
industry to reduce the need for chemical biocides. 
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APPENDICES	
  
 

Appendix	
  A.	
  	
  Full	
  water	
  analysis	
  for	
  OSP	
  samples.	
  	
   

Analysis 
OSP Sample 3  
9300 Barrels 

OSP Sample 5  
21,400 Barrels 

OSP Sample 7  
34,000 Barrels 

Aluminium	
   0.283	
  ppm	
   4.44	
  ppm	
   3.23	
  ppm	
  
Barium	
   38.9	
  ppm	
   19.6	
  ppm	
   18.3	
  ppm	
  
Bromide	
   <0.060	
  ppm	
   <0.060	
  ppm	
   <0.060	
  ppm	
  
Cadmium	
   <0.006	
  ppm	
   <0.006	
  ppm	
   <0.006	
  ppm	
  
Carbonate	
   0.00	
  mg/L	
   0.00	
  mg/L	
   0.00	
  mg/L	
  
Chloride	
   70,500	
  ppm	
   71,800	
  ppm	
   76,300	
  ppm	
  
Chromium	
   <0.005	
  ppm	
   <0.005	
  ppm	
   <0.005	
  ppm	
  
Copper	
   <0.010	
  ppm	
   <0.010	
  ppm	
   0.637	
  ppm	
  
Fluoride	
   52.1	
  ppm	
   55.2	
  ppm	
   55.7	
  ppm	
  
Iron	
   3.87	
  ppm	
   5.51	
  ppm	
   4.16	
  ppm	
  
Lead	
   0.053	
  ppm	
   0.039	
  ppm	
   0.027	
  ppm	
  
Magnesium	
   800	
  ppm	
   735	
  ppm	
   449	
  ppm	
  
Manganese	
   0.410	
  ppm	
   0.447	
  ppm	
   0.531	
  ppm	
  
Nickel	
   <0.005	
  ppm	
   <0.005	
  ppm	
   <0.005	
  ppm	
  
Nitrate-­‐N	
   12.6	
  ppm	
   13.8	
  ppm	
   <0.060	
  ppm	
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Nitrite-­‐N	
   <0.060	
  ppm	
   <0.060	
  ppm	
   <0.060	
  ppm	
  
Phosphate	
   <0.090	
  ppm	
   <0.090	
  ppm	
   <0.090	
  ppm	
  
Potassium	
   383	
  ppm	
   330	
  ppm	
   385	
  ppm	
  
Sodium	
   22,100	
  ppm	
   18,000	
  ppm	
   22,100	
  ppm	
  
Sulfate	
   45.2	
  ppm	
   54.5	
  ppm	
   43.1	
  ppm	
  
Zinc	
   0.221	
  ppm	
   0.221	
  ppm	
   0.577	
  ppm	
  
Alkalinity	
   336	
  mg/L	
  CaCO3	
   360	
  mg/L	
  CaCO3	
   352	
  mg/L	
  CaCO3	
  
Conductance	
   142.0	
  mS	
   136.6	
  mS	
   147.8	
  mS	
  
Specific	
  Gravity	
   1.066	
   0.937	
   1.014	
  
Sulfide	
   2.4	
  ppm	
   2.4	
  ppm	
   2.4	
  ppm	
  
TDS	
   145,000	
  ppm	
   142,000	
  ppm	
   149,000	
  ppm	
  
Corrosion	
  Inhibitor	
   PPM	
   PPM	
   PPM	
  
Imidazoline	
   <	
  50	
  ppm	
   <	
  50	
  ppm	
   <	
  10	
  ppm	
  
Quaternary	
  Amines	
   <	
  50	
  ppm	
   <	
  50	
  ppm	
   <	
  10	
  ppm	
  
VFA	
   PPM	
  	
   PPM	
  	
   PPM	
  	
  
Acetate	
   <	
  2	
  ppm	
   <	
  2	
  ppm	
   <	
  2	
  ppm	
  
Formate	
   <	
  2	
  ppm	
   <	
  2	
  ppm	
   <	
  2	
  ppm	
  
Butyrate	
   <	
  2	
  ppm	
   <	
  2	
  ppm	
   <	
  2	
  ppm	
  
Proprionate	
   <	
  2	
  ppm	
   <	
  2	
  ppm	
   <	
  2	
  ppm	
  

	
  
Samples	
  collected	
  at	
  approximately	
  9300,	
  21,400,	
  and	
  34,000	
  barrels	
  of	
  water	
   received	
  at	
  
GIT.	
   	
   There	
   was	
   no	
   immediately	
   detectable	
   carbon	
   source.	
   Upstream	
   data	
   is	
   required	
   to	
  
confirm	
  this.	
  	
  Corrosion	
  inhibitor	
  was	
  less	
  than	
  50	
  ppm	
  in	
  the	
  samples	
  collected	
  at	
  GIT.	
  	
  No	
  
significant	
  corrosion	
  risks	
  were	
  identified	
  in	
  the	
  analysis	
  above	
  except	
  for	
  the	
  concentration	
  
of	
  chloride	
  in	
  the	
  system.	
  	
  Lab	
  Ref.	
  No.	
  10010-­‐REP-­‐001 
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Appendix B.  SRB Media Component Comparisons 

Component, per L 1D.aespoeensis  2MPB 3D.marrakechis 4D. longus 
KH2PO4 0.15	
   0.5 g 0.5 g none 
K2HPO4 none none 0.5 g none 
NH4Cl 1	
   1.0 g 0.5 g 1.0 g 
Na2S04  1.0 g none 2.0 g 
CaCl2*6H20 1.0 g (*2H2O) 0.1 g 0.05g (*2H2O) 1.0 g (*2H2O) 
MgS04 (anhydrous) 0.3	
  (*7H20)	
   1.0 g none 1.0 g *7H2O 
MgCl2*6H2) 0.5	
   none 0.3 g none 
KCl 0.67	
   none 0.1 g none 
KHCO3 none none none 0.3 g 
cystiene hydrochloride 
after autoclave 10 ml none 0.25 g 0.5 g 
MOPS buffer  none none 3.0 g 
trace mineral solution 10	
  mL	
  	
   none 1 ml none 
resazurin, 0.1% after 
autoclave 2 ml none 1 ml none 
NaHCO3 after autoclave none none to 30 mM none 
Na2S*9H2O after 
autoclave 10 ml none to 1.7 mM none 
l21 Vitamine after 
autoclave 10 mL none 1 ml none 
vitamin B12 stock after 
autoclave 1 ml none none none 
thiamine stock after 
autoclave 1 ml none none none 
Na Lactate (60%) 5 ml 4.7 mL none 6.0 ml 
Yeast Extract 0.5 g 1.0 g 0.1 g 1.0 g 
Sodium acetate none 2.5 g none 1.0 g 
Na thioglycolate/ 
Mercaptoacetic Acid none 0.1 g none none 
Sodium ascorbate none 0.1g none none 
FeS04*7H20 none 0.5g none 1 ml of 0.4% 
NaCl 11.9 25 g NaCl 0.4 g none 
Instant Ocean     
For 2.5% MPB none 5 g  none none 
For 6% MPB none 20 g none none 
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Appendix C.  Bacterial Diversity of COSC and OSP samples. 

 

Species 
COS

C 
12/4  

COSC 
2/25  

OSP.
A  

OSP.
B  

OSP.
C  

OSP.
D  Metabolism Lookup Ref 

Acetobacter syzygii 0 0.03 0 0 0 0   

Acetobacterium tundrae 0 0.03 0 0.02 0 0 APB (6) 

Acidobacterium sp 0 0.03 0 0 0.07 0 APB (53) 

Acinetobacter johnsonii 0 0 0 0 0 0.04   

Actinomycetales sp 0 0.05 0 0 0 0   

Alkalibacter sp 0 0 0 0 0 0.12 Biodeg sugars alkaliphile (40) 

Alkalibacterium sp 0 0.03 0 0 0 0 alkaliphile  

Alkaliflexus imshenetskii 0 0 0.29 0.08 0 0.41 alkaliphile  

Alkaliflexus sp 0 0 0 0.02 0 0 alkaliphile  

Allochromatium palmeri 0 0 0 0 0 0.04   

Anaerophaga sp 0.04 0.03 0.22 0.06 0.15 0.2 Ferm thermophile (30) 
Anaerophaga 
thermohalophila 0 0 0.07 0.04 0.03 0.12 

Ferm thermophile (30) 

Aquicella sp 0 0.03 0 0 0 0   

Arcobacter sp 0.04 0 0.29 0.29 0.72 1.63 NRSOB (57) 

Arenimonas sp 0 0 0.07 0.1 0.03 0   

Arhodomonas sp 0 0.03 0 0 0 0   

Avibacterium sp 0 0 0.07 0.02 0 0   

Bacillus azotoformans 0 0 0 0 0 0.04   

Bacillus licheniformis 0.62 0.05 0 0 0 0   

Bacillus sp 0 0.03 0 0 0 0 Diverse  (136) 

Bacteroides graminisolvens 0.04 0 0 0 0 0 Ferm (95) 

Bacteroides sp 0.04 0.05 0 0.02 0 0.04 Ferm (104) 

Beggiatoa sp 0 0 0.61 0.04 0.1 0.12 SOB, white mats hydrocarbon seeps (116) 

Blastomonas sp 0 0 0 0.02 0 0   

Bosea sp 0 0 0.04 0.02 0 0   

Caldilinea sp 0 0 0 0 0 0.04 filamentous (72) 

Calditerrivibrio nitroreducens 0 0 0 0 0 0.04   

Caminicella sp 0 0 0.86 0.04 0.2 0.04 Ferm thermophile spore-former (4) 

Campylobacteraceae sp 0 0 0 0.02 0 0   
Candidatus Alysiosphaera 
europeae 0 0 0 0 0 0.04 

  
Candidatus 
Magnetobacterium sp 0 0 0 0 0 0.04 

  
Candidatus Protochlamydia 
sp 0 0.03 0 0 0 0 

  

Cellulophaga sp 0 0 0.07 0.02 0 0   

Chromatiaceae sp 0 0 0 0 0 0.04   

Clostridia sp 0 0 0 0 0 0.04   
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Clostridiales sp 0 0.16 0.18 0.02 0.05 0.25   
Clostridiisalibacter 
paucivorans 0 0 0 0.02 0 0.04   

Clostridium difficile 0 0 0.04 0 0 0.04   

Clostridium paradoxum 0 0 0 0 0 0.04   

Clostridium sp 0 0.21 0.11 0.06 0 0.16 Ferm Diverse (101) 

Coccinistipes vermicola 0 0.08 0 0 0 0   

Corynebacterium sp 0 0 0 0 0.02 0 heterotroph (82) 

Croceitalea eckloniae 0.04 0 0 0 0 0   

Cytophaga fermentans 0 0.03 0.04 0.04 0.02 0.04 subsurface community (7) 

Cytophaga sp 62.3 12.55 1.04 0.51 0.15 0.94 BIoDeg HC oilfield (113) 

Dehalobacter sp 0 0.05 0 0 0 0 BioDeg dichlorobenzene deg (93) 

Deinococcus navajonensis 0.35 0 0 0 0 0 radiation resistant (26) 

Deinococcus sp 5.01 0.37 0 0 0 0 radiation resistant (26) 

Desulfobacteraceae sp 0.12 0.08 0 0 0 0.04 SRBa SRB (8) 

Desulfobacterium sp 0.04 0 0 0 0 0 SRBa SRB BioDeg Benzene (117) 

Desulfobotulus sp 6.45 0.55 0 0 0 0 SRBa SRB (121) 

Desulfobulbus sp 0.12 0.1 0 0.02 0 0 SRBa SRB (100) 

Desulfocaldus sp 0.74 0.87 0 0 0.02 0.04 SRBa SRB (88) 

Desulfocapsa sp 0 0 0.4 0.04 0 0.08 SRBa SRB (88) 

Desulfococcus oleovorans 0 0 0 0 0.02 0 SRBa SRB BioDeg HC alkane Gi: 

Desulfohalobiaceae sp 0 0.34 0 0.02 0.02 0 SRBa SRB (39) 

Desulfohalobium retbaense 0 0 5.66 2.36 0.58 3.02 SRBa SRB (125) 

Desulfohalobium utahense 0.12 0.21 0.04 0 0.14 0.04 SRBa SRB (62) 

Desulfomicrobium sp 0 0 0 0.12 0.03 0.04 SRBa SRB (151) 
Desulfonatronospira 
thiodismutans 0 0.16 0 0 0 0 

SRBa SRB (122) 
Desulfonatronovibrio 
hydrogenovorans 0 0 0.11 0.12 0.24 0.49 

SRBa SRB (122) 

Desulfonatronovibrio sp 0 0 0.07 0.06 0.02 0 SRBa SRB (122) 
Desulfonauticus 
autotrophicus 1.17 6.25 0.04 0.02 0 0 

SRBa SRB (85) 

Desulfonauticus submarinus 0 0.03 0 0 0 0 SRBa SRB (5) 

Desulfonospora sp 0 0 0 0.02 0.03 0   

Desulfopila aestuarii 0 0 0 0.02 0 0 SRBa SRB (137) 

Desulfosalina propionicus 0.04 0.1 0 0.02 0 0 SRBa SRB (69) 

Desulfosalina sp 0.47 0.52 0 0 0.09 0.08 SRBa SRB (1) 

Desulfothermus naphthae 0.23 0.03 0.04 0.04 0.03 0 SRBa SRB (88) 

Desulfothermus okinawensis 0 0.45 0 0 0 0 SRBa SRB (96) 
Desulfotomaculum 
geothermicum 0 0.05 0 0 0 0 

SRBa SRB (29) 

Desulfotomaculum sp 0 0.03 0 0 0 0 SRBa SRB (42) 
Desulfovermiculus 
halophilus 0.08 0.08 0 0 0.03 0 

SRBa SRB (10) 
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Desulfovibrio alkalitolerans 0 0 0 0.04 0.02 0 
SRBa SRB Alkaliniphile municipal 
heating water (2) 

Desulfovibrio bastinii 0 0 0 0 0.02 0 SRBa SRB (79) 

Desulfovibrio capillatus 0 0 0 0.1 0.7 0.2 SRBa SRB (90) 
Desulfovibrio  

dechloracetivorans 0 0.03 0 0.02 0.02 0.04 
SRBa SRB (135) 

Desulfovibrio gabonensis 0 0.03 0.54 0.41 0.17 1.19 SRBa SRB (139) 

Desulfovibrio gracilis 0 0 0 0.02 0.02 0 SRBa SRB (79) 

Desulfovibrio indonesiensis 0 0 0 0.02 0.02 0.04 SRBa SRB (115) 

Desulfovibrio senezii 0 0 0.11 0.02 0 0 SRBa SRB (141) 

Desulfovibrio sp 0 0.05 1.12 1.01 1.14 1.19 SRBa SRB (8) 

Desulfovibrio tunisiensis 0 0 0 0.04 0 0 SRBa SRB oilfield refinery (11) 

Desulfovibrionales sp 0.04 0.03 0 0.02 0 0 SRBa SRB (88) 

Desulfuromonadales sp 0 0 0 0.02 0.02 0.04 SRBa SuRB Fe(III)RB (76) 

Desulfuromonas acetexigens 0 0 0 0.02 0 0 SRBa SuRB Fe(III)RB (102) 

Desulfuromonas palmitatis 0 0 0.9 0.25 0.1 0.57 SRBa SuRB Fe(III)RB (76) 

Desulfuromonas sp 0 0 0.04 0.08 0 0.16 SRBa SuRB Fe(III)RB (76) 
Desulfuromonas 
svalbardensis 0 0 0 0 0 0.29 

SRBa SuRB Fe(III)RB (145) 

Desulfuromonas thiophila 0 0 0 0 0.02 0.04 SRBa SuRB Fe(III)RB (36) 

Desulfuromusa sp 0 0 0 0 0 0.04 SRBa SuRB Fe(III)RB (77) 

Dethiobacter sp 0.04 0 0 0 0 0.04 SRBa TRB SuRB (124) 

Devosia sp 0 0 0 0.02 0 0 heterotroph (113) 

Dorea sp 0 0 0.04 0 0 0   

Ectothiorhodospiraceae sp 0.12 0.16 0 0 0 0   

Elizabethkingia miricola 0 0 0.07 0 0 0   

Endozoicomonas elysicola 0 0 0 0.02 0 0   

Enterococcus sp 0 0.03 0 0 0 0 APB (37) 

Erythrobacter sp 0.04 0 0 0 0 0   

Eubacterium sp 0 0 0 0 0 0.04 Ferm acetate butyrate ethanol (114) 

Eudoraea adriatica 0 0 0.07 0 0 0   

Eudoraea sp 0 0 0 0 0 0.04   

Exiguobacterium sp 0 0 0 0 0.12 0   

Fervidobacterium sp 0 0 0 0.02 0 0   

Flavobacterium sp 0.27 0.03 0 0 0 0 BioDeg HC community member (14) 

Flexibacter sp 0 0.05 0 0 0 0 
BioDeg HC oil degrading consortium 
bacteria (113) 

Flexistipes sinusarabici 0.04 0.21 0.18 0.1 0.09 0.16 Ferm, similar to Fe(III)RB (74) 

Fusibacter sp 0 0.03 0 0 0 0.04 SRBa SuRB (3) 

Fusobacterium sp 0 0 0 0 0.02 0 unkwn anaerobe pathogens 38GI: 

Gemmatimonas sp 0 0 0 0 0 0.04 unkwn (156) 

Geobacter metallireducens 0 0 0 0.02 0 0 Fe(III)RB (76) 

Geobacter sp 0 0 4.32 1.15 0.17 1.72 Fe(III)RB (76) 
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Geotoga petraea 0 0 0.04 0.06 0.02 0 Ferm (56) 

Geotoga subterranea 0 0.03 0 0 0 0   

Gracilibacillus halotolerans 0.54 0.37 0 0 0 0   
Halanaerobacter 
chitinivorans 0.04 0 0 0 0 0 

  

Halanaerobacter lacunarum 0.04 0.1 0 0 0 0 Ferm (99) 

Halanaerobiaceae sp 0 0.37 8.32 8.21 2.73 4.54 Ferm (99) 

Halanaerobiales sp 0.08 0.79 0 0 0 0 Ferm (99) 

Halanaerobium acetethylicum 0 2.23 1.08 3.76 4.26 1.8 Ferm promotes SRB a methanogens (99) 

Halanaerobium congolense 0 0 44.92 46.84 72.18 46.71 
SRBa TRB Ferm promotes 
sulfidogens (111) 

Halanaerobium fermentans 0 0.29 0.04 0.1 0.03 0 Ferm promotes sulfidogens (71) 

Halanaerobium lacurosei 0 0.03 0.04 0.02 0 0 Ferm promotes sulfidogens (20) 

Halanaerobium praevalens 0 0.08 0.07 0.02 0 0.04 Ferm promotes sulfidogens (61) 
Halanaerobium 
saccharolyticum 1.75 9.69 2.52 3.8 3.51 2.57 

Ferm promotes sulfidogens (68) 

Halanaerobium salsuginis 0 0 0 0.04 0.02 0 Ferm promotes sulfidogens (99) 

Halanaerobium sp 0 2.7 3.75 6.34 4.55 3.56 Ferm promotes sulfidogens (61) 

Halocella cellulolsilytica 0 0.16 0 0 0 0.04 Ferm (108) 

Halocella sp 4.59 51.68 1.12 0.14 0.67 0.65 Ferm oilfield (108) 

Halomonas alimentaria 0 0 0 0 0.07 0 BioDeg HC halophile haloalkaliphilic (155) 

Halomonas sp 0.04 0.42 0 0.02 0 0.25 BioDeg HC halophile haloalkaliphilic (27) 

Halomonas ventosae 0 0 0 0 0 0.12 BioDeg HC halophile haloalkaliphilic (27) 

Halothermothrix orenii 0.04 0.21 0 0 0 0.04 BioDeg starch thermophile (21) 

Halothiobacillus halophilus 0 0.03 0 0 0 0 BioDeg starch thermophile  
Halothiobacillus 
hydrothermalis 0 0.13 0 0 0 0 

APB SOX (97) 

Halothiobacillus sp 0 0.03 0 0 0 0.04 APB SOX (97) 

Idiomarina sp 0.04 0.03 0 0 0 0   

Ignavibacterium album 0.12 0.05 0 0 0 0   

Imtechium assamiensis 0 0 0.07 0 0 0 Biofilm Biodeg PCB (78) 

Kaistia soli 0 0 0.18 0.02 0.02 0   

Kordiimonas sp 0 0 0 0.02 0 0   

Kurthia gibsonii 0 0 0 0.02 0 0 unkwn (65) 

Lactobacillus alvei 0 0.03 0 0 0 0 APB  

Lactobacillus crispatus 0.08 0 0 0 0 0 APB (129) 

Lactobacillus hamsteri 0.04 0 0 0 0 0 APB (129) 

Lactobacillus plantarum 0 0.03 0 0 0 0.04 APB (112) 

Lactobacillus sp 0 0 0 0.02 0 0 APB (129) 

Lactococcus lactis 0 0.03 0 0 0.02 0 APB (129) 

Lactococcus sp 0 0.05 0.04 0.02 0 0 APB (129) 

Leptotrichia sp 3.85 0.31 0.04 0.04 0 0 pathogen (33) 

Leuconostoc lactis 0.04 0 0 0 0 0   
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Levilinea sp 0 0 0 0.02 0 0 oilfield produced waters Alaska (104) 

Lewinella nigricans 0 0 0 0 0 0.04   

Loktanella tamlensis 0 0.05 0 0 0 0   

Maribius sp 0 0.03 0 0 0 0   

Marinilabilia salmonicolor 0 0 0 0.02 0 0 BioDeg Agar (138) 

Marinobacter bacchus 0 0 0 0 0 0.16 BioDeg HC (48) 

Marinobacter excellens 0 0 0 0.02 0 0 BioDeg HC (45) 
Marinobacter 
hydrocarbonoclasticus 0 0 0 0 0 0.04 

BioDeg HC (41) 

Marinobacter sp 0 0 0 0.21 0.09 4.82 BioDeg HC (154) 

Marinobacterium georgiense 0 0 0 0 0 0.04 BioDeg HC (41) 

Marinobacterium litorale 0 0 0 0.06 0.1 0.12 BioDeg HC (41) 

Marinobacterium sp 0 0 0 0.02 0 0.98 BioDeg HC (41) 

Marinobacterium stanieri 0 0 0 0 0 0.04 BioDeg HC  

Mariprofundus ferrooxydans 0 0 1.08 0.33 0.12 0.29 Fe(II)OX MIC iron corroding (86) 

Maritimibacter alkaliphilus 0 0.05 0 0 0 0   

Methylobacter sp 0 0 0 0 0 0.04 methylT (24) 

Methylocaldum sp 0.04 0 0 0 0 0.04 methylT (24) 

Methylocella sp 0 0 0 0.02 0.02 0 methylT (24) 

Methylophaga sp 0 0.03 0.25 0.04 0 0 methylT (24) 

Microbulbifer sp 0.31 0.1 0 0 0.02 0   

Microcella sp 0.12 0.03 0 0 0 0   

Natroniella sp 0 0.03 0 0 0 0   

Nevskia sp 0 0 0 0.04 0.03 0.08   

Nitrincola sp 0 0 0 0 0.02 0   

OD1 uncultured 0.04 0 0 0 0 0 uncultured anaerobe (32) 

Paenibacillus abekawaensis 0 0 0.04 0 0 0   

Paenibacillus anaericanus 0 0 0 0.04 0.02 0.12   

Paenibacillus campinasensis 0 0 0.04 0 0 0   

Paenibacillus graminis 0 0.08 0 0 0 0   

Paenibacillus sabinae 0.12 1.92 2.09 0.66 0.29 2.17 BioDeg PAH (64) 

Paenibacillus sp 0.08 0.26 0.29 0.16 0.05 0.25 BioDeg PAH (50) 

Paludibacter sp 0.19 0 0 0 0 0 Ferm (142) 

Parvularcula sp 0 0 0.04 0 0 0   

Pelobacter acetylenicus 0 0 0 0.1 0.07 0 Fe(III)RB (76) 

Pelobacter carbinolicus 0 0 0 0 0 0.12 Fe(III)RB (76) 

Pelobacter propionicus 0 0 0 0.02 0 0.08 Fe(III)RB (76) 

Pelobacter seleniigenes 0 0 0.04 0.08 0.02 0.04 Fe(III)RB (76) 

Pelobacter sp 0 0 11.38 19.69 4.83 12.38 Fe(III)RB (76)	
  
Pelobacter venetianus 0 0 0 0.04 0 0.12 Fe(III)RB (76)	
  
Pelotomaculum sp 0 0 0.04 0 0 0 Ferm (58) 

Peptostreptococcaceae sp 0 0.21 0.25 0.1 0.2 1.14 BioFilm MIC (13) 



50 

Phormidium sp 0.04 0 0 0 0 0 photoT oil tolorent (25) 

Pigmentiphaga daeguensis 0 0 0 0 0 0.04   

Prolixibacter bellariivorans 0 0 0 0 0.02 0.12   
Prosthecochloris 
vibrioformis 0 0.03 0 0 0 0 

photoT  

Prosthecomicrobium sp 0 0 0 0.02 0 0   

Proteiniphilum sp 0.19 0 0 0 0 0 Ferm (22) 

Proteus vulgaris 0 0 0 0.02 0 0   

Pseudomonas sp 7.93 1.5 0.79 0.45 0.17 0.57 BioFilm MIC (109) 

Pseudoruegeria sp 0 0.08 0 0 0 0   

Psychrobacter sp 0 0 0 0 0 0.04 BIoDeg HC oil oilfield (107) 

Psychroflexus sp 0.08 0 0 0 0 0   

Rhizobium sp 0 0 0.04 0 0 0 NiF (43) 

Rhodobacter sp 0 0.03 0 0 0 0.04 photoT (81) 

Rhodobacteraceae sp 0 0.08 0 0 0 0   

Rhodobacterales sp 0.04 0 0 0 0 0   

Rickettsia sp 0.08 0 0 0 0 0   

Roseobacter sp 0 0.05 0 0 0 0   

Rubrimonas sp 0 0 0 0 0 0.04   

Ruminococcus sp 0 0 0.04 0 0 0   

Salinibacter sp 0.16 0.29 0 0 0 0   

Sediminimonas qiaohouensis 0 0.03 0 0 0 0   

Sneathiella glossodoripedis 0 0 0.29 0.08 0.05 0.04   

Sphingobacteria sp 0 0 0 0.02 0 0   

Sphingobacterium sp 0.27 0.03 0.32 0.08 0.07 0.2 generalist aerobic (67) 

Sphingomonadaceae sp 0 0 0.18 0.06 0.03 0.04   

Sphingomonas sp 0 0 1.73 0.27 0.1 0.16 
BioDeg phenanthrene (water 
insoluble) (55) 

Spirochaeta 
bajacaliforniensis 0 0.03 0.11 0 0.02 0.08 

SRBa TRB SuRB Ferm (38) 

Spirochaeta sp 0.04 0 0.29 0 0.02 0.04 
Ferm Divers some SRBa TRB H2S 
resistant (80) 

Staphylococcus epidermidis 0 0.03 0 0 0 0   

Streptococcus mutans 0.04 0.13 0.18 0 0 0.04   
Sulfurospirillum 
arcachonense 0 0 0 0.02 0 0 

NRSOB (36) 

Sulfurospirillum sp 0 0 0 0.02 0.03 0 NRSOB (57) 

Sulfurovum lithotrophicum 0.04 0 0 0 0 0 SOB (59) 

Synechococcus sp 0 0.16 0 0 0 0 photoT (47) 

Syntrophaceticus schinkii 0 0.03 0 0 0 0 syntrophic acetate-oxidizing; co-
methanogen-syntroph (152) 

Syntrophomonas sp 0 0 0 0.02 0 0 Syntroph BioDeg FA (87) 

Syntrophus gentianae 0 0 0.11 0.02 0.02 0.04 BioDeg syntroph alkane (117) 

Syntrophus sp 0 0.08 0 0 0 0.08 BioDeg syntroph alkane (46) 
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Telmatospirillum siberiense 0 0.03 0.14 0.04 0 0.04   
Thermoanaerobacter 
cellulolyticus 0 0.03 0 0 0 0   

Thermoanaerobacter sp 0.04 0 0 0.02 0 0.04 Ferm ethanol thermophile (35) 
Thermodesulforhabdus 
norvegica 0 0.03 0 0 0 0 

SRBa SRB thermophile (9) 

Thermothrix thiopara 0 0.03 0 0 0 0   

Thermotogales sp 0 0.03 0.32 0.02 0.05 0.16  (56) 

Thermovirga sp 0 0 0 0.04 0.03 0.25 Biofilm Pipeline (128) 

Thermus sp 0 0.03 0 0 0 0 
Fe(III)RB thermophile Taq 
polymerase source (66) 

Thiohalorhabdus 
denitrificans 0.23 0.21 0 0 0 0 

NRSOB neutrophile halophile (123) 

Thiomicrospira sp 0 0.03 0 0 0 0.04 SOB neutrophile (123) 

Tindallia sp 0.04 0.05 0 0 0 0 Ferm alkaliphile (105) 

Trichococcus sp 0 0.03 0 0 0 0 APB Ferm (127) 

Vagococcus lutrae 0 0 0 0 0.02 0   

Verrucomicrobiales sp 0 0 0 0 0 0.04   

Verrucomicrobium sp 0.04 0.03 0 0 0 0 Ferm (144) 

Zooshikella ganghwensis 0 0.03 0 0 0 0   
 

Anaerobic alkane-degrading bacterium Desulfococcus oleovorans Hxd3 (DSM 6200) was isolated from an 
oil/water mixture from an oil production plant. [GI:158508843]  
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Appendix D.  Genomic Details of 32 Completely Sequenced SRB. 

 
 
Completely sequenced sulfate reducing bacteria present in the NCBI public database.  
Information in each column:  
1. Entries, grouped by taxonomic proximity. 
2. Refseq identifiers are given.   
3. The genome size, in million base pairs (Mbp)  
4. Total number of annotated protein coding genes,  
5. The number of proteins annotated as integrases, and phage related.  None* indicates that the 
protein entries were incomplete  
6. The number of prophage elements identified  
7. Corresponding DsrA protein accession numbers.  
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Appendix E.  Comparison of the phylogenetic analysis of A 

 

 
 
Comparison of the phylogenetic analysis of A. 16s rRNA gene sequences and B. DsrA protein 
sequences from 24 sulfate reducing prokaryotes for which whole genome sequences are 
available.  A neighbor-joining tree was generated using ClustalX with a bootstrap value of 1000.  
Shaded boxes correspond to members of the Peptococcaceae.  Genus, species abbreviations 
are as follows: Desulfotomaculum_reducens MI-1 (Dred_MI-1), Desulfotomaculum acetoxidans 
DSM 771(Dace_DSM_771), Desulfitobacterium hafniense Y51 (Dhaf_Y51), Desulfitobacterium 
hafniense DCB-2 (Dhaf_DCB-2), Candidatus Desulforudis audaxviator MP104C 
(C_D_aud_MP104C), Thermodesulfovibrio yellowstonii DSM 11347 (Tyel_DSM_11347), 
Desulfarculus baarsii DSM 2075 (Dbaa_DSM_2075), Desulfatibacillum alkenivorans AK-01 
(Dbalk_AK-01), Desulfobacterium autotrophicum HRM2 (Daut_HRM2), Candidatus 
Desulfococcus oleovorans Hxd3 (C_Dole_Hxd3), Desulfotalea psychrophila LSv54 
(Dpsy_LSv54), Desulfohalobium retbaense DSM 5692 (Dret_DSM_5692), Desulfonatronospira 
thiodismutans ASO3-1 (Dthi_ASO3-1), Desulfomicrobium baculatum DSM 4028 
(Dbac_DSM_4028), Desulfovibrio vulgaris subsp. vulgaris DP4 (Dvul_DP4), Desulfovibrio 
vulgaris str. 'Miyazaki F' (Dvul_Miyazaki_F), Desulfovibrio desulfuricans subsp. desulfuricans str. 
ATCC 27774 (Ddes_ATCC_27774), Desulfovibrio magneticus RS-1 (Dmag_RS-1), Desulfovibrio 
salexigens DSM 2638 (Dsal_DSM_2638), Desulfurivibrio alkaliphilus AHT2 (Dvalk_AHT2), 
Desulfovibrio piger ATCC 29098 (Dpig_ATCC_29098), Desulfovibrio vulgaris RCH1 
(Dvul_RCH1), Desulfovibrio aespoeensis Aspo-2 (Daes_Aspo-2), Desulfovibrio sp. FW1012B 
(Dsp_FW1012B), Desulfovibrio fructosovorans JJ (Dfru_JJ), Desulfovibrio desulfuricans subsp. 
desulfuricans str. G20 (Ddes_G20), Desulfovibrio vulgaris str. Hildenborough 
(Dvul_Hildenborough), Desulfovibrio sp. 3_1_syn3 (Dsp_3_1_syn3), Syntrophobacter 
fumaroxidans MPOB (Sfum_MPOB), Archaeoglobus fulgidus DSM 4304 (Aful_DSM_4304), 
Archaeoglobus profundus DSM 5631 (Apro_DSM_5631) 
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Appendix F.  Prophage Elements Identified in 32 SRB Genomes 

 
 
Prophage identified in the completely sequence genomes of sulfate reducing bacteria. 
Nucleotide range corresponds to base pairs of putative prophage, based on the corresponding 
genome entry listed in Table 1.  Locus tag range denotes the predicted gene products from the 
leftmost and rightmost genes of the prophage element that exhibit similarity to a known phage 
associated gene product.  Morphology abbreviations are contractile-tailed myophage (Myo), 
flexible-tailed siphophage (sipho), and short-tailed podophage (podo).  Elements for which 
morphological prediction could not be made are listed as unknown (ukn). 
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Appendix	
  G.	
  	
  Partial	
  List	
  of	
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